/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" // #include "paddle/operators/math/activation_functor.h" // #define ACTIVATION_KERNEL_NAME(ACTIVATION_NAME) ACTIVATION_NAME##Kernel // #define DEFINE_ACTIVATION_KERNEL(ACTIVATION_NAME) \ // template \ // class ACTIVATION_KERNEL_NAME(ACTIVATION_NAME) : public framework::OpKernel { \ // public: \ // void Compute(const framework::ExecutionContext& context) const override { \ // auto* X = context.Input("X"); \ // auto* Y = context.Output("Y"); \ // Y->mutable_data(context.GetPlace()); \ // math::ACTIVATION_NAME functor; \ // auto* device_context = context.device_context(); \ // functor(*device_context, *X, Y); \ // } \ // }; // #define DEFINE_ACTIVATION_GRAD_KERNEL(ACTIVATION_GRAD_NAME) \ // template \ // class ACTIVATION_KERNEL_NAME(ACTIVATION_GRAD_NAME) \ // : public framework::OpKernel { \ // public: \ // void Compute(const framework::ExecutionContext& context) const override { \ // auto* X = context.Input("X"); \ // auto* Y = context.Input("Y"); \ // auto* dY = \ // context.Input(framework::GradVarName("Y")); \ // auto* dX = \ // context.Output(framework::GradVarName("X")); \ // dX->mutable_data(context.GetPlace()); \ // math::ACTIVATION_GRAD_NAME functor; \ // auto* device_context = context.device_context(); \ // functor(*device_context, *X, *Y, *dY, dX); \ // } \ // }; namespace paddle { namespace operators { template class ActivationKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* X = context.Input("X"); auto* Y = context.Output("Y"); Y->mutable_data(context.GetPlace()); auto x = framework::EigenVector::Flatten(*X); auto y = framework::EigenVector::Flatten(*Y); auto place = context.GetEigenDevice(); Functor functor; functor(place, x, y); } }; template class ActivationGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* X = context.Input("X"); auto* Y = context.Input("Y"); auto* dY = context.Input(framework::GradVarName("Y")); auto* dX = context.Output(framework::GradVarName("X")); dX->mutable_data(context.GetPlace()); auto dy = framework::EigenVector::Flatten(*dY); auto x = framework::EigenVector::Flatten(*X); auto y = framework::EigenVector::Flatten(*Y); auto dx = framework::EigenVector::Flatten(*dX); auto place = context.GetEigenDevice(); Functor functor; functor(place, x, y, dy, dx); } }; struct Sigmoid { template void operator()(Device d, X x, Y y) { y.device(d) = 1. / (1. + (-x).exp()); } }; struct SigmoidGrad { template void operator()(Device d, X x, Y y, dY dy, dX dx) { dx.device(d) = dy * y * (1. - y); } }; struct Exp { template void operator()(Device d, X x, Y y) { y.device(d) = x.exp(); } }; struct ExpGrad { template void operator()(Device d, X x, Y y, dY dy, dX dx) { dx.device(d) = y; } }; // template // struct Relu { // void operator()(Device d, X x, Y y) { // y.device(d) = x.cwiseMax(static_cast(0)); // } // }; // template // struct ReluGrad { // void operator()(Device d, X x, Y y, dY dy, dX dx) { // dx.device(d) = dy * (x > static_cast(0)).template cast(); // } // }; // DEFINE_ACTIVATION_KERNEL(Sigmoid); // DEFINE_ACTIVATION_GRAD_KERNEL(SigmoidGrad); // DEFINE_ACTIVATION_KERNEL(Exp); // DEFINE_ACTIVATION_GRAD_KERNEL(ExpGrad); // DEFINE_ACTIVATION_KERNEL(Relu); // DEFINE_ACTIVATION_GRAD_KERNEL(ReluGrad); } // namespace operators } // namespace paddle