import collections import py_paddle.swig_paddle as api from data_feeder import DataFeeder from topology import Topology from . import event as v2_event from . import optimizer as v2_optimizer from . import parameters as v2_parameters __all__ = ['SGD'] """ Trainer package TODO(yuyang18): Complete comments. """ def default_event_handler(event): """ Default event handler. It will print some log and save mode. TODO(yuyang18): Complete it! :param event: :return: """ pass class SGD(object): """ Simple SGD Trainer. TODO(yuyang18): Complete comments :param update_equation: The optimizer object. :type update_equation: paddle.v2.optimizer.Optimizer :param cost: Target cost that neural network should be optimized. :type cost: paddle.v2.config_base.Layer :param parameters: The parameters dictionary. :type parameters: paddle.v2.parameters.Parameters :param extra_layers: Some layers in the neural network graph are not in the path of cost layer. :type extra_layers: paddle.v2.config_base.Layer """ def __init__(self, cost, parameters, update_equation, extra_layers=None): if not isinstance(parameters, v2_parameters.Parameters): raise TypeError('parameters should be parameters') if not isinstance(update_equation, v2_optimizer.Optimizer): raise TypeError("update equation parameter must be " "paddle.v2.optimizer.Optimizer") topology = Topology(cost, extra_layers=extra_layers) self.__optimizer__ = update_equation self.__topology__ = topology self.__parameters__ = parameters self.__topology_in_proto__ = topology.proto() # In local mode, disable sparse_remote_update. for param in self.__topology_in_proto__.parameters: if param.sparse_remote_update: param.sparse_remote_update = False self.__data_types__ = topology.data_type() gm = api.GradientMachine.createFromConfigProto( self.__topology_in_proto__, api.CREATE_MODE_NORMAL, self.__optimizer__.enable_types()) assert isinstance(gm, api.GradientMachine) self.__gradient_machine__ = gm self.__gradient_machine__.randParameters() parameters.append_gradient_machine(gm) def train(self, reader, num_passes=1, event_handler=None, feeding=None): """ Training method. Will train num_passes of input data. :param reader: :param num_passes: The total train passes. :param event_handler: Event handler. A method will be invoked when event occurred. :type event_handler: (BaseEvent) => None :param feeding: Feeding is a map of neural network input name and array index that reader returns. :type feeding: dict :return: """ if event_handler is None: event_handler = default_event_handler __check_train_args__(**locals()) updater = self.__optimizer__.create_local_updater() updater.init(self.__gradient_machine__) self.__gradient_machine__.start() batch_evaluator = self.__gradient_machine__.makeEvaluator() assert isinstance(batch_evaluator, api.Evaluator) pass_evaluator = self.__gradient_machine__.makeEvaluator() assert isinstance(pass_evaluator, api.Evaluator) out_args = api.Arguments.createArguments(0) feeder = DataFeeder(self.__data_types__, feeding) for pass_id in xrange(num_passes): event_handler(v2_event.BeginPass(pass_id)) pass_evaluator.start() updater.startPass() for batch_id, data_batch in enumerate(reader()): batch_evaluator.start() event_handler( v2_event.BeginIteration( pass_id=pass_id, batch_id=batch_id)) pass_type = updater.startBatch(len(data_batch)) self.__gradient_machine__.forwardBackward( feeder(data_batch), out_args, pass_type) self.__gradient_machine__.eval(pass_evaluator) self.__gradient_machine__.eval(batch_evaluator) for each_param in self.__gradient_machine__.getNonStaticParameters( ): updater.update(each_param) cost_sum = out_args.sum() cost = cost_sum / len(data_batch) updater.finishBatch(cost) batch_evaluator.finish() event_handler( v2_event.EndIteration( pass_id=pass_id, batch_id=batch_id, cost=cost, evaluator=batch_evaluator)) updater.finishPass() pass_evaluator.finish() event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator)) self.__gradient_machine__.finish() def test(self, reader, feeding=None): feeder = DataFeeder(self.__data_types__, feeding) evaluator = self.__gradient_machine__.makeEvaluator() out_args = api.Arguments.createArguments(0) evaluator.start() total_cost = 0 num_samples = 0.0 for data_batch in reader(): num_samples += len(data_batch) self.__gradient_machine__.forward( feeder(data_batch), out_args, api.PASS_TEST) total_cost += out_args.sum() self.__gradient_machine__.eval(evaluator) evaluator.finish() return v2_event.TestResult( evaluator=evaluator, cost=total_cost / num_samples) def __check_train_args__(reader, event_handler, **kwargs): """ Check train function's argument types """ if not callable(reader) or not isinstance(reader(), collections.Iterator): raise TypeError('train_data_reader should be a function, ' 'which can return a iterator') if not callable(event_handler): raise TypeError('event handler should be a function')