// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/infermeta/unary.h" namespace paddle { namespace operators { class ClipOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(ctx, "X"); #ifdef PADDLE_WITH_MKLDNN if (this->CanMKLDNNBeUsed(ctx, input_data_type)) { return framework::OpKernelType(input_data_type, ctx.GetPlace(), framework::DataLayout::kMKLDNN, framework::LibraryType::kMKLDNN); } #endif return framework::OpKernelType(input_data_type, ctx.GetPlace()); } }; template class ClipOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "Tensor, the input of clip op, data type should be float32 or " "float64."); AddInput("Min", "Tensor, the lower bound, data type should be float32 " "or float64.") .AsDispensable(); AddInput("Max", "Tensor, the upper bound, data type should be float32 " "or float64.") .AsDispensable(); AddOutput( "Out", "Tensor, the clipped tensor, with the same shape and data type as " "input(x)"); AddAttr("min", "float number, the minimum value to clip by."); AddAttr("max", "float number, the maximum value to clip by."); AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false) .AsExtra(); AddAttr( "mkldnn_data_type", "(string, default \"float32\"). Data type of mkldnn kernel") .SetDefault("float32") .InEnum({"float32", "bfloat16"}) .AsExtra(); AddComment(R"DOC( Clip Operator. The clip operator limits the value of given input within an interval [min, max], just as the following equation, $$ Out = \MIN(\MAX(x, min), max) $$ )DOC"); } }; class ClipOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "clip_grad"); OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", "Out@GRAD", "clip_grad"); auto x_dims = ctx->GetInputDim("X"); if (ctx->HasOutput(framework::GradVarName("X"))) { ctx->SetOutputDim(framework::GradVarName("X"), x_dims); } } framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto input_data_type = OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Out")); #ifdef PADDLE_WITH_MKLDNN if (this->CanMKLDNNBeUsed(ctx, input_data_type)) { return framework::OpKernelType(input_data_type, ctx.GetPlace(), framework::DataLayout::kMKLDNN, framework::LibraryType::kMKLDNN); } #endif return framework::OpKernelType(input_data_type, ctx.GetPlace()); } }; template class ClipGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("clip_grad"); op->SetInput("X", this->Input("X")); if (this->HasInput("Min")) { op->SetInput("Min", this->Input("Min")); } if (this->HasInput("Max")) { op->SetInput("Max", this->Input("Max")); } op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetAttrMap(this->Attrs()); } }; DECLARE_INPLACE_OP_INFERER(ClipInplaceInferer, {"X", "Out"}); DECLARE_INPLACE_OP_INFERER(ClipGradInplaceInferer, {framework::GradVarName("Out"), framework::GradVarName("X")}); template class ClipDoubleGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("clip_grad"); op->SetInput("X", this->Input("X")); if (this->HasInput("Min")) { op->SetInput("Min", this->Input("Min")); } if (this->HasInput("Max")) { op->SetInput("Max", this->Input("Max")); } op->SetInput(framework::GradVarName("Out"), this->OutputGrad(framework::GradVarName("X"))); op->SetOutput(framework::GradVarName("X"), this->InputGrad(framework::GradVarName("Out"))); op->SetAttrMap(this->Attrs()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; DECLARE_INFER_SHAPE_FUNCTOR(clip, ClipInferShapeFunctor, PD_INFER_META(phi::UnchangedInferMeta)); REGISTER_OPERATOR(clip, ops::ClipOp, ops::ClipOpMaker, ops::ClipGradOpMaker, ops::ClipGradOpMaker, ops::ClipInplaceInferer, ClipInferShapeFunctor); REGISTER_OPERATOR(clip_grad, ops::ClipOpGrad, ops::ClipGradInplaceInferer, ops::ClipDoubleGradOpMaker, ops::ClipDoubleGradOpMaker); REGISTER_OP_VERSION(clip) .AddCheckpoint( R"ROC( Upgrade clip add a new input [Min])ROC", paddle::framework::compatible::OpVersionDesc() .NewInput("Min", "Pass the mix, min value as input, not attribute. Min is " "dispensable.") .NewInput("Max", "Pass the mix, min value as input, not attribute. Max is " "dispensable."));