# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import os from ..fluid.layer_helper import LayerHelper from ..fluid.framework import Variable, OpProtoHolder, in_dygraph_mode, convert_np_dtype_to_dtype_ from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype from ..fluid.layers.tensor import fill_constant from ..fluid.layers import utils from ..fluid.dygraph.parallel import prepare_context import paddle import paddle.fluid as fluid import paddle.fluid.core as core __all__ = [ 'broadcast', 'all_reduce', 'reduce', 'all_gather', 'scatter', 'barrier', 'ReduceOp', ] class ReduceOp: """ Specify the type of operation used for element-wise reductions. It should be one of the following values: ReduceOp.SUM ReduceOp.MAX ReduceOp.MIN ReduceOp.PROD Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import ReduceOp from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() if paddle.distributed.ParallelEnv().local_rank == 0: np_data = np.array([[4, 5, 6], [4, 5, 6]]) else: np_data = np.array([[1, 2, 3], [1, 2, 3]]) data = paddle.to_tensor(np_data) paddle.distributed.all_reduce(data, op=ReduceOp.SUM) out = data.numpy() # [[5, 7, 9], [5, 7, 9]] """ SUM = 0 MAX = 1 MIN = 2 PROD = 3 class _Group(): """The abstract representation of group.""" def __init__(self, rank, rank_num): self.rank = rank self.nranks = rank_num # NOTE(chenweihang): Lazily initialized global group information # If we initialize _default_group when import module, it will # not update when we use spawn to run multi-process training _default_group = None def _get_global_default_group(): global _default_group if _default_group is None: _default_group = _Group( int(os.getenv("PADDLE_TRAINER_ID", "0")), int(os.getenv("PADDLE_TRAINERS_NUM", "1"))) return _default_group def broadcast(tensor, src, group=0): """ Broadcast a tensor from the source to all others. Args: tensor (Tensor): The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type should be float16, float32, float64, int32 or int64. src (int): The source rank. group (int): The process group to work on. It is Optional. Returns: None. Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() if paddle.distributed.ParallelEnv().local_rank == 0: np_data = np.array([[4, 5, 6], [4, 5, 6]]) else: np_data = np.array([[1, 2, 3], [1, 2, 3]]) data = paddle.to_tensor(np_data) paddle.distributed.broadcast(data, 1) out = data.numpy() # [[1, 2, 3], [1, 2, 3]] """ if in_dygraph_mode(): return core.ops.c_broadcast(tensor, tensor, 'root', src, 'use_calc_stream', True, 'ring_id', group) op_type = 'c_broadcast' check_variable_and_dtype( tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'], 'broadcast') if not isinstance(src, int) or not isinstance(group, int): raise ValueError("Both the type of 'src' and 'group' for broadcast " "should be int.") helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, attrs={ 'root': src, 'use_calc_stream': True, 'ring_id': group, }) def all_reduce(tensor, op=ReduceOp.SUM, group=0): """ Reduce a tensor over all ranks so that all get the result. Args: tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type should be float16, float32, float64, int32 or int64. op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. group (int): Optional. The process group to work on. Returns: None. Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import ReduceOp from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() if paddle.distributed.ParallelEnv().local_rank == 0: np_data = np.array([[4, 5, 6], [4, 5, 6]]) else: np_data = np.array([[1, 2, 3], [1, 2, 3]]) data = paddle.to_tensor(np_data) paddle.distributed.all_reduce(data) out = data.numpy() # [[5, 7, 9], [5, 7, 9]] """ if in_dygraph_mode(): if op == ReduceOp.SUM: return core.ops.c_allreduce_sum(tensor, tensor, 'use_calc_stream', True, 'ring_id', group) elif op == ReduceOp.MAX: return core.ops.c_allreduce_max(tensor, tensor, 'use_calc_stream', True, 'ring_id', group) elif op == ReduceOp.MIN: return core.ops.c_allreduce_min(tensor, tensor, 'use_calc_stream', True, 'ring_id', group) elif op == ReduceOp.PROD: return core.ops.c_allreduce_prod(tensor, tensor, 'use_calc_stream', True, 'ring_id', group) else: raise ValueError("Unknown parameter: {}.".format(op)) check_variable_and_dtype( tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_reduce') if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]: raise ValueError("The op for all_reduce must be one of educeOp.PROD, " "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.") if op == ReduceOp.SUM: op_type = 'c_allreduce_sum' elif op == ReduceOp.MAX: op_type = 'c_allreduce_max' elif op == ReduceOp.MIN: op_type = 'c_allreduce_min' elif op == ReduceOp.PROD: op_type = 'c_allreduce_prod' if not isinstance(group, int): raise ValueError("The type of 'group' for all_reduce should be int.") helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, attrs={'ring_id': group, 'use_calc_stream': True}) def reduce(tensor, dst, op=ReduceOp.SUM, group=0): """ Reduce a tensor to the destination from all others. Args: tensor (Tensor): The output Tensor for the destination and the input Tensor otherwise. Its data type should be float16, float32, float64, int32 or int64. dst (int): The destination rank id. op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD): Optional. The operation used. group (int): The id of the process group to work on. Returns: None. Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() if paddle.distributed.ParallelEnv().local_rank == 0: np_data = np.array([[4, 5, 6], [4, 5, 6]]) else: np_data = np.array([[1, 2, 3], [1, 2, 3]]) data = paddle.to_tensor(np_data) paddle.distributed.reduce(data, 0) out = data.numpy() # [[5, 7, 9], [5, 7, 9]] """ if in_dygraph_mode(): if op == ReduceOp.SUM: return core.ops.c_reduce_sum(tensor, tensor, 'use_calc_stream', True, 'ring_id', group, 'root_id', dst) elif op == ReduceOp.MAX: return core.ops.c_reduce_max(tensor, tensor, 'use_calc_stream', True, 'ring_id', group, 'root_id', dst) elif op == ReduceOp.MIN: return core.ops.c_reduce_min(tensor, tensor, 'use_calc_stream', True, 'ring_id', group, 'root_id', dst) elif op == ReduceOp.PROD: return core.ops.c_reduce_prod(tensor, tensor, 'use_calc_stream', True, 'ring_id', group, 'root_id', dst) else: raise ValueError("Unknown parameter: {}.".format(op)) op_type = 'c_reduce' check_variable_and_dtype( tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_reduce') if not op in [ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN, ReduceOp.PROD]: raise ValueError("The op for reduce must be one of educeOp.PROD, " "ReduceOp.SUM, ReduceOp.MAX, ReduceOp.MIN.") if op == ReduceOp.SUM: op_type = 'c_reduce_sum' elif op == ReduceOp.MAX: op_type = 'c_reduce_max' elif op == ReduceOp.MIN: op_type = 'c_reduce_min' elif op == ReduceOp.PROD: op_type = 'c_reduce_prod' if not isinstance(dst, int) or not isinstance(group, int): raise ValueError("Both the type of 'dst' and 'group' for reduce " "should be int.") helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [tensor]}, outputs={'Out': [tensor]}, attrs={ 'ring_id': group, 'use_calc_stream': True, 'root_id': dst, }) def all_gather(tensor_list, tensor, group=0): """ Gather tensors from all participators and all get the result. Args: tensor_list (list): A list of output Tensors. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32 or int64. tensor (Tensor): The Tensor to send. Its data type should be float16, float32, float64, int32 or int64. group (int): The id of the process group to work on. Returns: None. Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() tensor_list = [] if paddle.distributed.ParallelEnv().local_rank == 0: np_data1 = np.array([[4, 5, 6], [4, 5, 6]]) np_data2 = np.array([[4, 5, 6], [4, 5, 6]]) data1 = paddle.to_tensor(np_data1) data2 = paddle.to_tensor(np_data2) paddle.distributed.all_gather(tensor_list, data1) else: np_data1 = np.array([[1, 2, 3], [1, 2, 3]]) np_data2 = np.array([[1, 2, 3], [1, 2, 3]]) data1 = paddle.to_tensor(np_data1) data2 = paddle.to_tensor(np_data2) paddle.distributed.all_gather(tensor_list, data2) """ op_type = 'c_allgather' helper = LayerHelper(op_type, **locals()) out = helper.create_variable_for_type_inference(dtype=tensor.dtype) _default_group = _get_global_default_group() if in_dygraph_mode(): core.ops.c_allgather(tensor, out, 'use_calc_stream', True, 'ring_id', group, 'nranks', _default_group.nranks) else: if not isinstance(tensor_list, list): raise ValueError("The type of 'tensor_list' for all_gather " "should be list.") for elem in tensor_list: check_variable_and_dtype( elem, 'tensor_list', ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather') check_variable_and_dtype( tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'], 'all_gather') if not isinstance(group, int): raise ValueError("The type of 'group' for all_gather " "should be int.") helper.append_op( type=op_type, inputs={'X': [tensor]}, outputs={'Out': [out]}, attrs={ 'ring_id': group, 'use_calc_stream': True, 'nranks': _default_group.nranks }) tensor_list.extend(paddle.split(out, _default_group.nranks, 0)) def scatter(tensor, tensor_list=None, src=0, group=0): """ Scatter a tensor to all participators. Args: tensor (Tensor): The output Tensor. Its data type should be float16, float32, float64, int32 or int64. tensor_list (list): A list of Tensors to scatter. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32 or int64. src (int): The source rank id. group (int): The id of the process group to work on. Returns: None. Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() if paddle.distributed.ParallelEnv().local_rank == 0: np_data1 = np.array([7, 8, 9]) np_data2 = np.array([10, 11, 12]) else: np_data1 = np.array([1, 2, 3]) np_data2 = np.array([4, 5, 6]) data1 = paddle.to_tensor(np_data1) data2 = paddle.to_tensor(np_data2) if paddle.distributed.ParallelEnv().local_rank == 0: paddle.distributed.scatter(data1, src=1) else: paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1) out = data1.numpy() """ op_type = 'c_scatter' _default_group = _get_global_default_group() rank = _default_group.rank nranks = _default_group.nranks if rank != src: tensor_list = [] for _ in range(nranks): tensor_list.append(tensor) temp = paddle.concat(tensor_list, axis=0) if in_dygraph_mode(): return core.ops.c_scatter(temp, tensor, 'use_calc_stream', True, 'ring_id', group, 'nranks', _default_group.nranks, 'root', src) check_variable_and_dtype( tensor, 'tensor', ['float16', 'float32', 'float64', 'int32', 'int64'], 'scatter') if not isinstance(group, int) or not isinstance(src, int): raise ValueError("Both the type of 'src' and 'group' for scatter " "should be int.") helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [temp]}, outputs={'Out': [tensor]}, attrs={ 'ring_id': group, 'root': src, 'use_calc_stream': True, 'nranks': nranks, }) def barrier(group=0): """ Barrier among all participators in the group. Args: group (int): The id of the process group to work on. Returns: None. Examples: .. code-block:: python import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() paddle.distributed.barrier() """ op_type = 'barrier' temp = fill_constant([1], dtype="int32", value="1") if in_dygraph_mode(): return core.ops.barrier(temp, temp, 'ring_id', group) if not isinstance(group, int): raise ValueError("The type of 'group' for barrier must be int.") helper = LayerHelper(op_type, **locals()) helper.append_op( type=op_type, inputs={'X': [temp]}, outputs={'Out': [temp]}, attrs={'ring_id': group})