/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/framework/op_registry.h" #include "paddle/operators/nccl/nccl_gpu_common.h" namespace paddle { namespace operators { static constexpr char kParallelScopes[] = "parallel_scopes"; // NCCLinitOp class NCCLInitOp : public framework::OperatorBase { public: NCCLInitOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, const platform::Place &place) const override { PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kParallelScopes)), "Can not find variable '%s' in the scope.", kParallelScopes); const auto &name = Output("Communicator"); PADDLE_ENFORCE_NOT_NULL(scope.FindVar(name), "Can not find variable '%s' in the scope.", name); // A parallel do may not use all the gpus. For example, the batch size is 7 // in the last batch while we have 8 gpu. In this case, parallel_do will // create 7 parallel scopes, so should ncclInitOp create 7 gpu peers auto ¶llel_scopes = scope.FindVar(Input(kParallelScopes)) ->Get>(); std::vector gpus(parallel_scopes.size()); for (int i = 0; i < static_cast(parallel_scopes.size()); ++i) { gpus[i] = i; } PADDLE_ENFORCE(!gpus.empty(), "NCCL init with 0 gpus."); if (scope.FindVar(name) == nullptr) { PADDLE_THROW("Output(Communicator) is needed for ncclInit operator."); } platform::Communicator *comm = scope.FindVar(name)->GetMutable(); comm->InitAll(gpus); } }; class NCCLInitOpVarTypeInference : public framework::VarTypeInference { public: void operator()(const framework::OpDesc &op_desc, framework::BlockDesc *block) const override { auto out_var_name = op_desc.Output("Communicator").front(); auto &out_var = block->FindRecursiveOrCreateVar(out_var_name); auto var_type = framework::proto::VarDesc::NCCL_COM; out_var.SetType(var_type); } }; class NCCLInitOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override {} }; class NCCLInitOpMaker : public framework::OpProtoAndCheckerMaker { public: NCCLInitOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput(kParallelScopes, "The working place of parallel do."); AddOutput("Communicator", "Create Communicator for communicating between gpus"); AddComment(R"DOC( NCCLInit Operator. Create communicator. )DOC"); } }; // AllReduceOp class NCCLAllReduceOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), " Input(X) of AllReduce op input should not be NULL"); PADDLE_ENFORCE( ctx->HasInput("Communicator"), " Input(Communicator) of AllReduce op input should not be NULL"); PADDLE_ENFORCE(ctx->HasOutput("Out"), " Output(Out) of AllReduce op output should not be NULL"); auto x_dims = ctx->GetInputsDim("X"); std::string reduction = ctx->Attrs().Get("reduction"); PADDLE_ENFORCE((reduction == "ncclSum" || reduction == "ncclProd" || reduction == "ncclMin" || reduction == "ncclMax"), "invalid reduction."); ctx->SetOutputsDim("Out", x_dims); ctx->ShareLoD("X", /*->*/ "Out"); } }; // ReduceOp class NCCLReduceOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), " Input(X) of Reduce op input should not be NULL"); PADDLE_ENFORCE( ctx->HasInput("Communicator"), " Input(Communicator) of Reduce op input should not be NULL"); PADDLE_ENFORCE(ctx->HasOutput("Out"), " Input(X) of Reduce op input should not be NULL"); std::string reduction = ctx->Attrs().Get("reduction"); PADDLE_ENFORCE((reduction == "ncclSum" || reduction == "ncclProd" || reduction == "ncclMin" || reduction == "ncclMax"), "invalid reduction."); auto x_dims = ctx->GetInputsDim("X"); ctx->SetOutputsDim("Out", x_dims); ctx->ShareLoD("X", /*->*/ "Out"); } }; // BcastOp class NCCLBcastOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), " Input(X) of Bcast op input should not be NULL"); PADDLE_ENFORCE(ctx->HasInput("Communicator"), " Input(Communicator) of Bcast op input should not be NULL"); PADDLE_ENFORCE(ctx->HasOutput("Out"), " Output(Out) of Bcast op output should not be NULL"); int root = ctx->Attrs().Get("root"); PADDLE_ENFORCE(root != platform::kInvalidGPUId, "Bcast root must be set."); auto x_dims = ctx->GetInputsDim("X"); ctx->SetOutputsDim("Out", x_dims); ctx->ShareLoD("X", /*->*/ "Out"); } }; // AllreduceOp class NCCLAllReduceOpMaker : public framework::OpProtoAndCheckerMaker { public: NCCLAllReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of AllReduce op"); AddInput("Communicator", "Communicator for communicating between gpus"); AddOutput("Out", "The output of AllReduce op"); AddAttr("reduction", "(string, default 'ncclSum') " "{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}.") .SetDefault("ncclSum"); AddComment(R"DOC( NCCLAllReduce Operator. AllReduce the input tensors. )DOC"); } }; // ReduceOp class NCCLReduceOpMaker : public framework::OpProtoAndCheckerMaker { public: NCCLReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of Reduce op"); AddInput("Communicator", "Communicator for communicating between gpus"); AddOutput("Out", "The output of Reduce op"); AddAttr("reduction", "(string, default 'ncclSum') " "{'ncclMin', 'ncclMax', 'ncclProd', 'ncclSum'}.") .SetDefault("ncclSum"); AddAttr("root", "(int, default kInvalidGPUId) " "Root gpu of the parameter. If not, " "set(platform::kInvalidGPUId). Hashed by name.") .SetDefault(platform::kInvalidGPUId); AddComment(R"DOC( NCCLReduce Operator. Reduce the tensors. )DOC"); } }; // BcastOp class NCCLBcastOpMaker : public framework::OpProtoAndCheckerMaker { public: NCCLBcastOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of BcastSend op"); AddInput("Communicator", "Communicator for communicating between gpus"); AddOutput("Out", "The output of Bcast"); AddAttr("root", "(int, default kInvalidGPUId) " "Root gpu of the parameter. If not, " "set(platform::kInvalidGPUId). Hashed by name.") .SetDefault(platform::kInvalidGPUId); AddComment(R"DOC( NCCLBcast Operator. Bcast the tensors. )DOC"); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(ncclInit, ops::NCCLInitOp, paddle::framework::EmptyGradOpMaker, ops::NCCLInitOpMaker, ops::NCCLInitOpVarTypeInference, ops::NCCLInitOpShapeInference); REGISTER_OP_WITHOUT_GRADIENT(ncclAllReduce, ops::NCCLAllReduceOp, ops::NCCLAllReduceOpMaker); REGISTER_OP_WITHOUT_GRADIENT(ncclBcast, ops::NCCLBcastOp, ops::NCCLBcastOpMaker); REGISTER_OP_WITHOUT_GRADIENT(ncclReduce, ops::NCCLReduceOp, ops::NCCLReduceOpMaker);