/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Indicesou may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { class AffineChannelOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) Feature map input can be a 4D tensor with order NCHW " "or NHWC. It also can be a 2D tensor and C is the second " "dimension."); AddInput("Scale", "(Tensor) 1D input of shape (C), the c-th element " "is the scale factor of the affine transformation " "for the c-th channel of the input."); AddInput("Bias", "(Tensor) 1D input of shape (C), the c-th element " "is the bias of the affine transformation for the " "c-th channel of the input."); AddAttr( "data_layout", "(string, default NCHW) Only used in " "An optional string from: \"NHWC\", \"NCHW\". " "Defaults to \"NHWC\". Specify the data format of the output data, " "the input will be transformed automatically. ") .SetDefault("AnyLayout"); AddOutput("Out", "(Tensor) A tensor of the same shape and order with X."); AddComment(R"DOC( Applies a separate affine transformation to each channel of the input. Useful for replacing spatial batch norm with its equivalent fixed transformation. The input also can be 2D tensor and applies a affine transformation in second dimension. $$Out = Scale*X + Bias$$ )DOC"); } }; class AffineChannelOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of AffineChannelOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(Scale) of AffineChannelOp should not be null."); PADDLE_ENFORCE(ctx->HasInput("Bias"), "Input(Bias) of AffineChannelOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of AffineChannelOp should not be null."); auto x_dims = ctx->GetInputDim("X"); auto scale_dims = ctx->GetInputDim("Scale"); auto b_dims = ctx->GetInputDim("Bias"); const framework::DataLayout data_layout = framework::StringToDataLayout( ctx->Attrs().Get("data_layout")); const int64_t C = (data_layout == framework::DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); PADDLE_ENFORCE_EQ(scale_dims.size(), 1UL); PADDLE_ENFORCE_EQ(b_dims.size(), 1UL); if (ctx->IsRuntime() || scale_dims[0] > 0) { PADDLE_ENFORCE_EQ(scale_dims[0], C); } if (ctx->IsRuntime() || b_dims[0] > 0) { PADDLE_ENFORCE_EQ(b_dims[0], C); } ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->ShareLoD("X", "Out"); } }; class AffineChannelOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null."); if (ctx->HasOutput(framework::GradVarName("X"))) { PADDLE_ENFORCE(ctx->HasInput("Scale"), "Input(Scale) should not be null."); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim(framework::GradVarName("Out"))); } if (ctx->HasOutput(framework::GradVarName("Scale"))) { // Scale@GRAD and Bias@GRAD must exist at the same time. PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), "Output(Scale@GRAD) should not be null."); PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); ctx->SetOutputDim(framework::GradVarName("Scale"), ctx->GetInputDim("Scale")); ctx->SetOutputDim(framework::GradVarName("Bias"), ctx->GetInputDim("Scale")); } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Out")), ctx.GetPlace()); } }; template class AffineChannelGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; std::unique_ptr Apply() const override { auto* op = new T(); op->SetType("affine_channel_grad"); op->SetInput("X", this->Input("X")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetInput("Scale", this->Input("Scale")); op->SetAttrMap(this->Attrs()); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale")); op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias")); return std::unique_ptr(op); } }; template using EigenArrayMap = Eigen::Map>; template using ConstEigenArrayMap = Eigen::Map>; template using EigenVectorArrayMap = Eigen::Map>; template using ConstEigenVectorArrayMap = Eigen::Map>; template class AffineChannelKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* scale = ctx.Input("Scale"); auto* bias = ctx.Input("Bias"); auto* y = ctx.Output("Out"); y->mutable_data(ctx.GetPlace()); const framework::DataLayout layout = framework::StringToDataLayout(ctx.Attr("data_layout")); auto dims = x->dims(); int N = dims[0]; int C = layout == framework::DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1]; int HxW = x->numel() / N / C; auto* scale_d = scale->data(); auto* bias_d = bias->data(); ConstEigenVectorArrayMap a_e(scale_d, C); ConstEigenVectorArrayMap b_e(bias_d, C); auto* x_d = x->data(); auto* y_d = y->data(); if (layout == framework::DataLayout::kNCHW) { int stride = C * HxW; for (int i = 0; i < N; i++) { ConstEigenArrayMap x_e(x_d, HxW, C); EigenArrayMap y_e(y_d, HxW, C); y_e = (x_e.rowwise() * a_e.transpose()).rowwise() + b_e.transpose(); x_d += stride; y_d += stride; } } else { int num = N * HxW; ConstEigenArrayMap x_e(x_d, C, num); EigenArrayMap y_e(y_d, C, num); y_e = (x_e.colwise() * a_e).colwise() + b_e; } } }; template class AffineChannelGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* scale = ctx.Input("Scale"); auto* dy = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dscale = ctx.Output(framework::GradVarName("Scale")); auto* dbias = ctx.Output(framework::GradVarName("Bias")); const framework::DataLayout layout = framework::StringToDataLayout(ctx.Attr("data_layout")); auto dims = x->dims(); int N = dims[0]; int C = layout == framework::DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1]; int HxW = x->numel() / N / C; auto* dy_d = dy->data(); auto* scale_d = scale->data(); ConstEigenVectorArrayMap scale_e(scale_d, C); T* dx_d = dx ? dx->mutable_data(ctx.GetPlace()) : nullptr; T* dscale_d = dscale ? dscale->mutable_data(ctx.GetPlace()) : nullptr; T* dbias_d = dbias ? dbias->mutable_data(ctx.GetPlace()) : nullptr; EigenVectorArrayMap dscale_e(dscale_d, C); EigenVectorArrayMap dbias_e(dbias_d, C); if (layout == framework::DataLayout::kNCHW) { // compute dscale and dbias int stride = C * HxW; auto* original_dy_d = dy_d; if (dscale && dbias) { auto* x_d = x->data(); for (int i = 0; i < N; i++) { ConstEigenArrayMap x_e(x_d, HxW, C); ConstEigenArrayMap dy_e(dy_d, HxW, C); if (i == 0) { dscale_e = (x_e * dy_e).colwise().sum(); } else { dscale_e += (x_e * dy_e).colwise().sum(); } if (i == 0) { dbias_e = dy_e.colwise().sum(); } else { dbias_e += dy_e.colwise().sum(); } x_d += stride; dy_d += stride; } } // compute dx if (dx) { dy_d = original_dy_d; for (int i = 0; i < N; i++) { ConstEigenArrayMap dy_e(dy_d, HxW, C); EigenArrayMap dx_e(dx_d, HxW, C); dx_e = dy_e.rowwise() * scale_e.transpose(); dy_d += stride; dx_d += stride; } } } else { int num = N * HxW; ConstEigenArrayMap dy_e(dy_d, C, num); // compute dscale and dbias if (dscale && dbias) { auto* x_d = x->data(); ConstEigenArrayMap x_e(x_d, C, num); dscale_e = (x_e * dy_e).rowwise().sum(); dbias_e = dy_e.rowwise().sum(); } // compute dx if (dx) { EigenArrayMap dx_e(dx_d, C, num); dx_e = dy_e.colwise() * scale_e; } } } }; class AffineChannelNoNeedBufferVarsInference : public framework::NoNeedBufferVarsInference { public: using framework::NoNeedBufferVarsInference::NoNeedBufferVarsInference; private: inline bool HasOutput(const std::string& name) const { auto& outputs = Outputs(); auto iter = outputs.find(name); if (iter == outputs.end() || iter->second.empty()) { return false; } else { return iter->second[0] != framework::kEmptyVarName; } } public: std::unordered_set operator()() const override { if (!HasOutput(framework::GradVarName("Scale")) && !HasOutput(framework::GradVarName("Bias"))) { return {"X"}; } else { return {}; } } }; DECLARE_INPLACE_OP_INFERER(AffineChannelInplaceInferer, {"X", "Out"}); DECLARE_INPLACE_OP_INFERER(AffineChannelGradInplaceInferer, {framework::GradVarName("Out"), framework::GradVarName("X")}); } // namespace operators } // namespace paddle namespace ops = paddle::operators; using CPU = paddle::platform::CPUDeviceContext; REGISTER_OPERATOR(affine_channel, ops::AffineChannelOp, ops::AffineChannelOpMaker, ops::AffineChannelGradMaker, ops::AffineChannelGradMaker, ops::AffineChannelInplaceInferer); REGISTER_OPERATOR(affine_channel_grad, ops::AffineChannelOpGrad, ops::AffineChannelNoNeedBufferVarsInference, ops::AffineChannelGradInplaceInferer); REGISTER_OP_CPU_KERNEL(affine_channel, ops::AffineChannelKernel, ops::AffineChannelKernel); REGISTER_OP_CPU_KERNEL(affine_channel_grad, ops::AffineChannelGradKernel, ops::AffineChannelGradKernel);