# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import paddle.v2 as paddle import unittest import numpy class TestDynRNN(unittest.TestCase): def setUp(self): self.word_dict = paddle.dataset.imdb.word_dict() self.BATCH_SIZE = 2 self.train_data = paddle.batch( paddle.dataset.imdb.train(self.word_dict), batch_size=self.BATCH_SIZE) def test_plain_while_op(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): sentence = fluid.layers.data( name='word', shape=[1], dtype='int64', lod_level=1) sent_emb = fluid.layers.embedding( input=sentence, size=[len(self.word_dict), 32], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='float32') rank_table = fluid.layers.lod_rank_table(x=sent_emb) sent_emb_array = fluid.layers.lod_tensor_to_array( x=sent_emb, table=rank_table) seq_len = fluid.layers.max_sequence_len(rank_table=rank_table) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) i.stop_gradient = False boot_mem = fluid.layers.fill_constant_batch_size_like( input=fluid.layers.array_read( array=sent_emb_array, i=i), value=0, shape=[-1, 100], dtype='float32') boot_mem.stop_gradient = False mem_array = fluid.layers.array_write(x=boot_mem, i=i) cond = fluid.layers.less_than(x=i, y=seq_len) cond.stop_gradient = False while_op = fluid.layers.While(cond=cond) out = fluid.layers.create_array(dtype='float32') with while_op.block(): mem = fluid.layers.array_read(array=mem_array, i=i) ipt = fluid.layers.array_read(array=sent_emb_array, i=i) mem = fluid.layers.shrink_memory(x=mem, i=i, table=rank_table) hidden = fluid.layers.fc(input=[mem, ipt], size=100, act='tanh') fluid.layers.array_write(x=hidden, i=i, array=out) fluid.layers.increment(x=i, in_place=True) fluid.layers.array_write(x=hidden, i=i, array=mem_array) fluid.layers.less_than(x=i, y=seq_len, cond=cond) all_timesteps = fluid.layers.array_to_lod_tensor( x=out, table=rank_table) last = fluid.layers.sequence_last_step(input=all_timesteps) logits = fluid.layers.fc(input=last, size=1, act=None) loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=logits, label=label) loss = fluid.layers.mean(x=loss) sgd = fluid.optimizer.SGD(1e-4) sgd.minimize(loss=loss) cpu = fluid.CPUPlace() exe = fluid.Executor(cpu) exe.run(startup_program) feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu) data = next(self.train_data()) val = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss])[0] self.assertEqual((1, ), val.shape) print(val) self.assertFalse(numpy.isnan(val)) def test_train_dyn_rnn(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): sentence = fluid.layers.data( name='word', shape=[1], dtype='int64', lod_level=1) sent_emb = fluid.layers.embedding( input=sentence, size=[len(self.word_dict), 32], dtype='float32') rnn = fluid.layers.DynamicRNN() with rnn.block(): in_ = rnn.step_input(sent_emb) mem = rnn.memory(shape=[100], dtype='float32') out_ = fluid.layers.fc(input=[in_, mem], size=100, act='tanh') rnn.update_memory(mem, out_) rnn.output(out_) last = fluid.layers.sequence_last_step(input=rnn()) logits = fluid.layers.fc(input=last, size=1, act=None) label = fluid.layers.data(name='label', shape=[1], dtype='float32') loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=logits, label=label) loss = fluid.layers.mean(x=loss) sgd = fluid.optimizer.Adam(1e-3) sgd.minimize(loss=loss) cpu = fluid.CPUPlace() exe = fluid.Executor(cpu) exe.run(startup_program) feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu) data = next(self.train_data()) loss_0 = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss])[0] for _ in xrange(100): val = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss])[0] # loss should be small after 100 mini-batch self.assertLess(val[0], loss_0[0]) if __name__ == '__main__': unittest.main()