// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/api/cxx_api.h" #include // NOLINT #include "paddle/fluid/lite/api/paddle_use_kernels.h" #include "paddle/fluid/lite/api/paddle_use_ops.h" #include "paddle/fluid/lite/api/paddle_use_passes.h" #include "paddle/fluid/lite/core/op_registry.h" namespace paddle { namespace lite { using Time = decltype(std::chrono::high_resolution_clock::now()); Time time() { return std::chrono::high_resolution_clock::now(); } double time_diff(Time t1, Time t2) { typedef std::chrono::microseconds ms; auto diff = t2 - t1; ms counter = std::chrono::duration_cast(diff); return counter.count() / 1000.0; } void Run(const char* model_dir, int repeat) { #ifdef LITE_WITH_ARM DeviceInfo::Init(); DeviceInfo::Global().SetRunMode(LITE_POWER_HIGH, 1); #endif lite::Predictor predictor; std::vector valid_places({ Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kInt8)}, }); predictor.Build(model_dir, Place{TARGET(kARM), PRECISION(kInt8)}, valid_places); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 3, 224, 224}))); auto* data = input_tensor->mutable_data(); for (int i = 0; i < input_tensor->dims().production(); i++) { data[i] = 1; } for (int i = 0; i < 10; i++) predictor.Run(); auto time1 = time(); for (int i = 0; i < repeat; i++) predictor.Run(); auto time2 = time(); std::cout << " predict cost: " << time_diff(time1, time2) / repeat << "ms" << std::endl; auto* out = predictor.GetOutput(0); LOG(INFO) << out << " memory size " << out->data_size(); LOG(INFO) << "dims " << out->dims(); LOG(INFO) << "out data size: " << out->data_size(); /* float sum = 0.; for (int i = 0; i < out->data_size(); i++) { LOG(INFO) << "out " << out->data()[i]; sum += out->data()[i]; } LOG(INFO) << sum; */ } } // namespace lite } // namespace paddle int main(int argc, char** argv) { CHECK_EQ(argc, 3) << "usage: ./cmd "; paddle::lite::Run(argv[1], std::stoi(argv[2])); return 0; }