// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/infermeta/backward.h" #include "paddle/phi/infermeta/unary.h" namespace paddle { namespace operators { class PixelUnshuffleOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; }; class PixelUnshuffleOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor, default Tensor), " "the input feature data of PixelUnshuffleOp, the layout is " "[N, C, H, W] or [N, H, W, C]."); AddOutput("Out", "(Tensor, default Tensor), the output of " "PixelUnshuffleOp. The layout is [N, C*factor^2, H/factor, " "W/factor] or [N, H/factor, W/factor, C*factor^2]."); AddAttr("downscale_factor", "the factor to decrease spatial resolution by.") .SetDefault(1); AddAttr( "data_format", "An optional string from: \"NHWC\", \"NCHW\". " "Defaults to \"NHWC\", Specify the data format of the input data.") .SetDefault("NCHW"); AddComment(R"DOC( Pixel Unshuffle operator This operator rearranges elements in a tensor of shape :math:`(*, C, H, W)` to a tensor of shape :math:`(*, C\times r^2, H / r, W / r)`. This operation is the reversion of PixelShuffle operation. Please refer to the paper: `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network `_ by Shi et. al (2016) for more details. )DOC"); } }; template class PixelUnshuffleGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("pixel_unshuffle_grad"); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetAttrMap(this->Attrs()); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); } }; class PixelUnshuffleGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; DECLARE_INFER_SHAPE_FUNCTOR(pixel_unshuffle, PixelUnshuffleInferShapeFunctor, PD_INFER_META(phi::PixelUnshuffleInferMeta)); REGISTER_OPERATOR(pixel_unshuffle, ops::PixelUnshuffleOp, ops::PixelUnshuffleOpMaker, ops::PixelUnshuffleGradOpMaker, ops::PixelUnshuffleGradOpMaker, PixelUnshuffleInferShapeFunctor); DECLARE_INFER_SHAPE_FUNCTOR(pixel_unshuffle_grad, PixelUnshuffleGradInferShapeFunctor, PD_INFER_META(phi::PixelUnshuffleGradInferMeta)); REGISTER_OPERATOR(pixel_unshuffle_grad, ops::PixelUnshuffleGradOp, PixelUnshuffleGradInferShapeFunctor);