// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "paddle/extension.h" #define CHECK_CPU_INPUT(x) \ PD_CHECK(x.place() == paddle::PlaceType::kCPU, #x " must be a CPU Tensor.") template void relu_cpu_forward_kernel(const data_t* x_data, data_t* out_data, int64_t x_numel) { PD_CHECK(x_data != nullptr, "x_data is nullptr."); PD_CHECK(out_data != nullptr, "out_data is nullptr."); for (int i = 0; i < x_numel; ++i) { out_data[i] = std::max(static_cast(0.), x_data[i]); } } template void relu_cpu_backward_kernel(const data_t* grad_out_data, const data_t* out_data, data_t* grad_x_data, int64_t out_numel) { for (int i = 0; i < out_numel; ++i) { grad_x_data[i] = grad_out_data[i] * (out_data[i] > static_cast(0) ? 1. : 0.); } } template void relu_cpu_double_backward_kernel(const data_t* out_data, const data_t* ddx_data, data_t* ddout_data, int64_t ddout_numel) { for (int64_t i = 0; i < ddout_numel; ++i) { ddout_data[i] = ddx_data[i] * (out_data[i] > static_cast(0) ? 1. : 0.); } } std::vector relu_cpu_forward(const paddle::Tensor& x) { auto out = paddle::empty(x.shape(), x.dtype(), x.place()); PD_DISPATCH_FLOATING_TYPES( x.type(), "relu_cpu_forward", ([&] { relu_cpu_forward_kernel( x.data(), out.mutable_data(x.place()), x.size()); })); return {out}; } std::vector relu_cpu_backward(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out) { auto grad_x = paddle::empty(x.shape(), x.dtype(), x.place()); PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] { relu_cpu_backward_kernel( grad_out.data(), out.data(), grad_x.mutable_data(x.place()), out.size()); })); return {grad_x}; } std::vector relu_cpu_double_backward( const paddle::Tensor& out, const paddle::Tensor& ddx) { CHECK_CPU_INPUT(out); CHECK_CPU_INPUT(ddx); auto ddout = paddle::empty(out.shape(), out.dtype(), out.place()); PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_double_backward", ([&] { relu_cpu_double_backward_kernel( out.data(), ddx.data(), ddout.mutable_data(out.place()), ddout.size()); })); std::cout << "Debug info: run relu cpu double backward success." << std::endl; return {ddout}; } std::vector relu_cuda_forward(const paddle::Tensor& x); std::vector relu_cuda_backward(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out); std::vector relu_cuda_double_backward( const paddle::Tensor& out, const paddle::Tensor& ddx); std::vector ReluForward(const paddle::Tensor& x) { if (x.place() == paddle::PlaceType::kCPU) { return relu_cpu_forward(x); } else if (x.place() == paddle::PlaceType::kGPU) { return relu_cuda_forward(x); } else { PD_THROW("Not implemented."); } } std::vector ReluBackward(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out) { // TODO(chenweihang): Check Input if (x.place() == paddle::PlaceType::kCPU) { return relu_cpu_backward(x, out, grad_out); } else if (x.place() == paddle::PlaceType::kGPU) { return relu_cuda_backward(x, out, grad_out); } else { PD_THROW("Not implemented."); } } std::vector ReluDoubleBackward(const paddle::Tensor& out, const paddle::Tensor& ddx) { if (out.place() == paddle::PlaceType::kCPU) { return relu_cpu_double_backward(out, ddx); } else if (out.place() == paddle::PlaceType::kGPU) { return relu_cuda_double_backward(out, ddx); } else { PD_THROW("Not implemented."); } } std::vector> ReluDoubleBackwardInferShape( const std::vector& out_shape, const std::vector& ddx_shape) { return {out_shape}; } PD_BUILD_OP(custom_relu) .Inputs({"X"}) .Outputs({"Out"}) .SetKernelFn(PD_KERNEL(ReluForward)); PD_BUILD_GRAD_OP(custom_relu) .Inputs({"X", "Out", paddle::Grad("Out")}) .Outputs({paddle::Grad("X")}) .SetKernelFn(PD_KERNEL(ReluBackward)); PD_BUILD_DOUBLE_GRAD_OP(custom_relu) .Inputs({"Out", paddle::Grad(paddle::Grad("X"))}) .Outputs({paddle::Grad(paddle::Grad("Out"))}) .SetKernelFn(PD_KERNEL(ReluDoubleBackward)) .SetInferShapeFn(PD_INFER_SHAPE(ReluDoubleBackwardInferShape)); std::vector relu_cpu_backward_without_x( const paddle::Tensor& out, const paddle::Tensor& grad_out) { auto grad_x = paddle::empty(out.shape(), out.dtype(), out.place()); PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] { relu_cpu_backward_kernel( grad_out.data(), out.data(), grad_x.mutable_data(out.place()), out.size()); })); return {grad_x}; } std::vector relu_cuda_backward_without_x( const paddle::Tensor& out, const paddle::Tensor& grad_out); std::vector ReluBackwardWithoutX( const paddle::Tensor& out, const paddle::Tensor& grad_out) { if (out.place() == paddle::PlaceType::kCPU) { return relu_cpu_backward_without_x(out, grad_out); } else if (out.place() == paddle::PlaceType::kGPU) { return relu_cuda_backward_without_x(out, grad_out); } else { PD_THROW("Not implemented."); } } std::vector> ReluBackwardWithoutXInferShape( const std::vector& out_shape, const std::vector& grad_out_shape) { return {out_shape}; } PD_BUILD_OP(custom_relu_no_x_in_backward) .Inputs({"X"}) .Outputs({"Out"}) .SetKernelFn(PD_KERNEL(ReluForward)); PD_BUILD_GRAD_OP(custom_relu_no_x_in_backward) .Inputs({"Out", paddle::Grad("Out")}) .Outputs({paddle::Grad("X")}) .SetKernelFn(PD_KERNEL(ReluBackwardWithoutX)) .SetInferShapeFn(PD_INFER_SHAPE(ReluBackwardWithoutXInferShape)); void relu_cpu_forward_out(const paddle::Tensor& x, paddle::Tensor* out) { out->reshape(x.shape()); PD_DISPATCH_FLOATING_TYPES( x.type(), "relu_cpu_forward", ([&] { relu_cpu_forward_kernel( x.data(), out->mutable_data(x.place()), x.size()); })); } void relu_cpu_backward_out(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out, paddle::Tensor* grad_x) { grad_x->reshape(x.shape()); PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] { relu_cpu_backward_kernel( grad_out.data(), out.data(), grad_x->mutable_data(x.place()), out.size()); })); } void relu_cuda_forward_out(const paddle::Tensor& x, paddle::Tensor* out); void relu_cuda_backward_out(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out, paddle::Tensor* grad_x); void ReluForwardOut(const paddle::Tensor& x, paddle::Tensor* out) { if (x.place() == paddle::PlaceType::kCPU) { return relu_cpu_forward_out(x, out); } else if (x.place() == paddle::PlaceType::kGPU) { return relu_cuda_forward_out(x, out); } else { PD_THROW("Not implemented."); } } void ReluBackwardOut(const paddle::Tensor& x, const paddle::Tensor& out, const paddle::Tensor& grad_out, paddle::Tensor* grad_x) { if (x.place() == paddle::PlaceType::kCPU) { return relu_cpu_backward_out(x, out, grad_out, grad_x); } else if (x.place() == paddle::PlaceType::kGPU) { return relu_cuda_backward_out(x, out, grad_out, grad_x); } else { PD_THROW("Not implemented."); } } PD_BUILD_OP(custom_relu_out) .Inputs({"X"}) .Outputs({"Out"}) .SetKernelFn(PD_KERNEL(ReluForwardOut)); PD_BUILD_GRAD_OP(custom_relu_out) .Inputs({"X", "Out", paddle::Grad("Out")}) .Outputs({paddle::Grad("X")}) .SetKernelFn(PD_KERNEL(ReluBackwardOut));