// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef PADDLE_WITH_HIP // HIP not support cusolver #include "paddle/phi/kernels/svd_kernel.h" #include "paddle/fluid/memory/memory.h" #include "paddle/phi/backends/dynload/cusolver.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/funcs/complex_functors.h" #include "paddle/phi/kernels/transpose_kernel.h" namespace phi { template static void GesvdjBatched(const phi::GPUContext& dev_ctx, int batchSize, int m, int n, int k, T* A, T* U, T* V, T* S, int* info, int thin_UV = 1); template <> void GesvdjBatched(const phi::GPUContext& dev_ctx, int batchSize, int m, int n, int k, float* A, float* U, float* V, float* S, int* info, int thin_UV) { /* compute singular vectors */ const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; /* compute singular vectors */ gesvdjInfo_t gesvdj_params = NULL; int lda = m; int ldu = m; int ldt = n; int lwork = 0; auto handle = dev_ctx.cusolver_dn_handle(); PADDLE_ENFORCE_GPU_SUCCESS( phi::dynload::cusolverDnCreateGesvdjInfo(&gesvdj_params)); PADDLE_ENFORCE_GPU_SUCCESS( phi::dynload::cusolverDnSgesvdj_bufferSize(handle, jobz, thin_UV, m, n, A, lda, S, U, ldu, V, ldt, &lwork, gesvdj_params)); auto workspace = paddle::memory::Alloc(dev_ctx, lwork * sizeof(float)); float* workspace_ptr = reinterpret_cast(workspace->ptr()); int stride_A = lda * n; int stride_U = ldu * (thin_UV ? k : m); int stride_V = ldt * (thin_UV ? k : n); for (int i = 0; i < batchSize; ++i) { PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cusolverDnSgesvdj(handle, jobz, thin_UV, m, n, A + stride_A * i, lda, S + k * i, U + stride_U * i, ldu, V + stride_V * i, ldt, workspace_ptr, lwork, info, gesvdj_params)); // check the error info int error_info; paddle::memory::Copy(phi::CPUPlace(), &error_info, dev_ctx.GetPlace(), info, sizeof(int), dev_ctx.stream()); PADDLE_ENFORCE_EQ( error_info, 0, phi::errors::PreconditionNotMet( "For batch [%d]: CUSolver SVD is not zero. [%d]", i, error_info)); } PADDLE_ENFORCE_GPU_SUCCESS( phi::dynload::cusolverDnDestroyGesvdjInfo(gesvdj_params)); } template <> void GesvdjBatched(const phi::GPUContext& dev_ctx, int batchSize, int m, int n, int k, double* A, double* U, double* V, double* S, int* info, int thin_UV) { /* compute singular vectors */ const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; /* compute singular vectors */ gesvdjInfo_t gesvdj_params = NULL; int lda = m; int ldu = m; int ldt = n; int lwork = 0; auto handle = dev_ctx.cusolver_dn_handle(); PADDLE_ENFORCE_GPU_SUCCESS( phi::dynload::cusolverDnCreateGesvdjInfo(&gesvdj_params)); PADDLE_ENFORCE_GPU_SUCCESS( phi::dynload::cusolverDnDgesvdj_bufferSize(handle, jobz, thin_UV, m, n, A, lda, S, U, ldu, V, ldt, &lwork, gesvdj_params)); auto workspace = paddle::memory::Alloc(dev_ctx, lwork * sizeof(double)); double* workspace_ptr = reinterpret_cast(workspace->ptr()); int stride_A = lda * n; int stride_U = ldu * (thin_UV ? k : m); int stride_V = ldt * (thin_UV ? k : n); for (int i = 0; i < batchSize; ++i) { PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cusolverDnDgesvdj(handle, jobz, thin_UV, m, n, A + stride_A * i, lda, S + k * i, U + stride_U * i, ldu, V + stride_V * i, ldt, workspace_ptr, lwork, info, gesvdj_params)); // check the error info int error_info; paddle::memory::Copy(phi::CPUPlace(), &error_info, dev_ctx.GetPlace(), info, sizeof(int), dev_ctx.stream()); PADDLE_ENFORCE_EQ( error_info, 0, phi::errors::PreconditionNotMet( "For batch [%d]: CUSolver SVD is not zero. [%d]", i, error_info)); } PADDLE_ENFORCE_GPU_SUCCESS( phi::dynload::cusolverDnDestroyGesvdjInfo(gesvdj_params)); } template void SvdKernel(const Context& dev_ctx, const DenseTensor& X, bool full_matrices, DenseTensor* U, DenseTensor* S, DenseTensor* VH) { auto& dims = X.dims(); int batch_count = 1; for (int i = 0; i < dims.size() - 2; i++) { batch_count *= dims[i]; } int rank = dims.size(); int m = dims[rank - 2]; int n = dims[rank - 1]; auto* u_data = dev_ctx.template Alloc>(U); auto* vh_data = dev_ctx.template Alloc>(VH); auto* s_data = dev_ctx.template Alloc>(S); // NOTE:(@xiongkun03) // matrices are assumed to be stored in column-major order in cusolver // then view A as n x m and do A^T SVD, we can avoid transpose // Must Copy X once, because the gesvdj will change the origin input matrix DenseTensor x_tmp; Copy(dev_ctx, X, dev_ctx.GetPlace(), false, &x_tmp); auto info = Empty(dev_ctx, {batch_count}); int* info_ptr = reinterpret_cast(info.data()); GesvdjBatched(dev_ctx, batch_count, n, m, std::min(m, n), dev_ctx.template Alloc(&x_tmp), vh_data, u_data, s_data, info_ptr, !full_matrices); auto UT_dim = U->dims(); std::swap(UT_dim[rank - 1], UT_dim[rank - 2]); // Get the dim of UT_dim U->Resize(UT_dim); // U is entirely UT auto tmp_U = TransposeLast2Dim(dev_ctx, *U); U->ShareDataWith(tmp_U); // U becomse UT, aka VT; } } // namespace phi PD_REGISTER_KERNEL(svd, // cuda_only GPU, ALL_LAYOUT, phi::SvdKernel, float, double) {} #endif // not PADDLE_WITH_HIP