/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "boost/optional.hpp" #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/platform/mkldnn_reuse.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using framework::DataLayout; template class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); const bool is_test = ctx.Attr("is_test"); PADDLE_ENFORCE( is_test == true, "ConvTransposeMKLDNN works only for inference!. Set is_test = True"); auto& dev_ctx = ctx.template device_context(); const auto& mkldnn_engine = dev_ctx.GetEngine(); auto* input = ctx.Input("Input"); auto* filter = ctx.Input("Filter"); auto* bias = ctx.HasInput("Bias") ? ctx.Input("Bias") : nullptr; auto* output = ctx.Output("Output"); PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN && input->format() != mkldnn::memory::format::format_undef, "Wrong layout/format set for Input tensor"); PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN && filter->format() != mkldnn::memory::format::format_undef, "Wrong layout/format set for Filter tensor"); PADDLE_ENFORCE(input->dims().size() == 4, "Input must be with 4 dimensions, i.e. NCHW"); PADDLE_ENFORCE(filter->dims().size() == 4, "Filter must be with 4 dimensions, i.e. OIHW"); if (bias) { PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN && bias->format() != mkldnn::memory::format::format_undef, "Wrong layout/format set for Bias tensor"); PADDLE_ENFORCE(bias->dims().size() == 1, "Bias must only have 1 dimension, i.e. X"); } std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); int groups = ctx.Attr("groups"); PADDLE_ENFORCE( dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1, "dilation in convolution is not implemented yet"); const T* input_data = input->data(); const T* filter_data = filter->data(); std::vector src_tz = paddle::framework::vectorize2int(input->dims()); std::vector iohw_weights_tz = paddle::framework::vectorize2int(filter->dims()); std::vector weights_tz = iohw_weights_tz; // IOHW -> OIHW weights_tz[0] = iohw_weights_tz[1]; weights_tz[1] = iohw_weights_tz[0]; // Custom Reorder from IOHW to OIHW auto iohw2oihw_reorder = [&iohw_weights_tz](const T* filter_data) -> std::shared_ptr { int o = iohw_weights_tz[1]; int c = iohw_weights_tz[0]; int h = iohw_weights_tz[2]; int w = iohw_weights_tz[3]; std::shared_ptr reordered_filter_data(new T[o * c * h * w](), std::default_delete()); for (int i = 0; i < c; ++i) { for (int j = 0; j < o; ++j) { int in_offset = j * h * w + i * o * h * w; int out_offset = j * c * h * w + i * h * w; std::memcpy(&(reordered_filter_data.get())[out_offset], &filter_data[in_offset], h * w * sizeof(T)); } } return reordered_filter_data; }; int g = std::max(groups, 1); if (g > 1) { int o = weights_tz[0]; int i = weights_tz[1]; int h = weights_tz[2]; int w = weights_tz[3]; weights_tz.resize(5); weights_tz[0] = g; weights_tz[1] = o / g; weights_tz[2] = i; weights_tz[3] = h; weights_tz[4] = w; } std::vector dst_tz = paddle::framework::vectorize2int(output->dims()); // Get unique name for storing MKLDNN primitives const std::string key = platform::ConvTransposeMKLDNNHandler::GetHash( src_tz, weights_tz, strides, paddings, dilations, groups, ctx.op().Output("Output")); std::vector pipeline; auto user_src_md = platform::MKLDNNMemDesc( {src_tz}, platform::MKLDNNGetDataType(), input->format()); auto user_weights_md = platform::MKLDNNMemDesc({weights_tz}, platform::MKLDNNGetDataType(), (g == 1) ? mkldnn::memory::format::oihw : mkldnn::memory::format::goihw); /* create memory descriptor for convolution without specified format * ('any') which lets a primitive (convolution in this case) choose * the memory format preferred for best performance */ std::string data_format = ctx.Attr("data_format"); auto chosen_memory_format = platform::data_format_to_memory_format(data_format); std::string fuse_activation = ctx.Attr("fuse_activation"); float fuse_alpha = ctx.Attr("fuse_alpha"); float fuse_beta = ctx.Attr("fuse_beta"); auto src_md = platform::MKLDNNMemDesc( src_tz, platform::MKLDNNGetDataType(), chosen_memory_format); auto weights_md = platform::MKLDNNMemDesc( weights_tz, platform::MKLDNNGetDataType(), chosen_memory_format); std::vector bias_tz; auto dst_md = platform::MKLDNNMemDesc( dst_tz, platform::MKLDNNGetDataType(), chosen_memory_format); platform::ConvTransposeMKLDNNHandler handler(dev_ctx, mkldnn_engine, key); // create a deconv(conv transpose) primitive descriptor and save it for // usage in backward std::shared_ptr conv_transpose_pd; auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference : mkldnn::prop_kind::forward_training; if (bias) { bias_tz = paddle::framework::vectorize2int(bias->dims()); auto bias_md = platform::MKLDNNMemDesc( bias_tz, platform::MKLDNNGetDataType(), mkldnn::memory::format::x); conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor( src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta, false, fwd_prop_kind); } else { conv_transpose_pd = handler.AcquireConvolutionPrimitiveDescriptor( src_md, weights_md, boost::none, dst_md, strides, paddings, mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta, false, fwd_prop_kind); } // create mkldnn memory from input tensors (data/weights) auto user_src_memory_p = handler.AcquireSrcMemory( user_src_md, platform::to_void_cast(input_data)); auto user_weights_memory_p = handler.AcquireWeightsMemory( user_weights_md, platform::to_void_cast(filter_data), is_test ? iohw2oihw_reorder : platform::user_function()); // create reorder primitive if the input format is not the preferred one auto src_memory_p = handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline); auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive( user_weights_memory_p, pipeline, is_test); std::shared_ptr dst_memory_p; auto output_data = output->mutable_data(ctx.GetPlace(), handler.GetDstMemorySize()); dst_memory_p = handler.AcquireDstMemoryFromPrimitive( platform::to_void_cast(output_data)); // create convolution op primitive std::shared_ptr conv_p; if (bias) { const T* bias_data = bias->data(); auto user_bias_md = platform::MKLDNNMemDesc({bias_tz}, platform::MKLDNNGetDataType(), mkldnn::memory::format::x); auto user_bias_memory_p = handler.AcquireBiasMemory( user_bias_md, platform::to_void_cast(bias_data)); auto bias_memory_p = handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline); conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p, bias_memory_p, dst_memory_p); } else { conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p, dst_memory_p); } // push primitive to stream and wait until it's executed pipeline.push_back(*conv_p); mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); output->set_layout(DataLayout::kMKLDNN); output->set_format(platform::GetMKLDNNFormat(*dst_memory_p)); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_KERNEL(conv2d_transpose, MKLDNN, ::paddle::platform::CPUPlace, ops::ConvTransposeMKLDNNOpKernel);