# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import logging import paddle.fluid as fluid import paddle.fluid.io as io import paddle.fluid.transpiler.distribute_transpiler as dist_transpiler from paddle.fluid.incubate.fleet.base.fleet_base import Fleet from paddle.fluid.incubate.fleet.base.fleet_base import Mode from paddle.fluid.incubate.fleet.base.fleet_base import DistributedOptimizer class DistributedStrategy(object): def __init__(self): # precision configs self.use_fp16 = False self.use_fp32 = True # algorithmic communication self.local_sgd = False self.dgc = False # communication topology configs self.h_allreduce = False def build(self): self.strategy_map = {} # make sure we set single precision config True if self.use_fp32 and self.use_fp16: self.use_fp16 = False # make sure we set single algorithmic communication True if self.local_sgd and self.dgc: self.local_sgd = False self.strategy_map["fp16"] = self.use_fp16 self.strategy_map["fp32"] = self.use_fp32 self.strategy_map["localsgd"] = self.local_sgd self.strategy_map["dgc"] = self.dgc self.strategy_map["h_allreduce"] = self.h_allreduce class DistributedOptimizerFactory(object): def __init__(self): self.strategy_to_optimizer_map() def strategy_to_optimizer_map(self): pattern = {} pattern["fp16"] = ["FP16SGDOptimizer", "FP16LocalSGDOptimizer"] pattern["fp32"] = ["FP32SGDOptimizer", "FP32LocalSGDOptimizer"] pattern["localsgd"] = ["FP16LocalSGDOptimizer", "FP32LocalSGDOptimizer"] pattern["h_allreduce"] = [ "FP32SGDOptimizer", "FP32LocalSGDOptimizer", "FP16SGDOptimizer", "FP16LocalSGDOptimizer", ] self.pattern = pattern def create_by_strategy(self, optimizer, strategy): if strategy == None: strategy = DistributedStrategy() strategy.build() strategy_list = [] for key in strategy.strategy_map: if strategy.strategy_map[key]: strategy_list.append(self.pattern[key]) classname = list(set.intersection(*map(set, strategy_list)))[0] return globals()[classname](optimizer, strategy) class Collective(Fleet): def __init__(self): super(Collective, self).__init__(Mode.COLLECTIVE) self._local_ip = 0 def init_worker(self): logging.warn( "You should not call 'init_worker' method for collective mode.") def run_worker(self, main_programs=None, scopes=None): logging.warn( "You should not call 'run_worker' method for collective mode.") def init_server(self, model_dir=None): logging.warn( "You should not call 'init_server' method for collective mode.") def run_server(self): logging.warn( "You should not call 'run_server' method for collective mode.") def stop_worker(self): logging.warn( "You should not call 'stop_worker' method for collective mode.") def distributed_optimizer(self, optimizer, strategy=None): optimizer_factory = DistributedOptimizerFactory() self._optimizer = \ optimizer_factory.create_by_strategy(optimizer, strategy) return self._optimizer def save_inference_model(self, executor, dirname, feeded_var_names=None, target_vars=None, main_program=None, export_for_deployment=True): io.save_inference_model(dirname, feeded_var_names, target_vars, self._executor, main_program, None, None, export_for_deployment) def save_persistables(self, executor, dirname, main_program=None): io.save_persistables(self._executor, dirname, main_program, None) fleet = Collective() class CollectiveOpBasedOptimizer(DistributedOptimizer): """ Collective Operator Base Class For Distributed Optimizer The class is invisible to a user """ def __init__(self, optimizer, strategy=None): super(CollectiveOpBasedOptimizer, self).__init__(optimizer, strategy) def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): return self._optimizer.backward(loss, startup_program, parameter_list, no_grad_set, callbacks) def apply_gradients(self, params_grads): return self._optimizer.apply_gradients(params_grads) class FP16SGDOptimizer(CollectiveOpBasedOptimizer): """ do all reduce within every minibatch """ def __init__(self, optimizer, strategy=None): super(FP16SGDOptimizer, self).__init__(optimizer, strategy) def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): pass class FP32LocalSGDOptimizer(CollectiveOpBasedOptimizer): def __init__(self, optimizer, strategy=None): super(FP32LocalSGDOptimizer, self).__init__(optimizer, strategy) def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): opts, param_and_grads = self._optimizer.minimize(loss) config = fluid.DistributeTranspilerConfig() config.mode = 'collective' config.collective_mode = 'local_sgd' t = fluid.DistributeTranspiler(config=config) t.transpile( trainer_id=fleet.worker_index(), trainers=fleet.worker_endpoints(), current_endpoint=fleet.worker_endpoints()[fleet.worker_index()], startup_program=startup_program, program=loss.block.program) return opts, param_and_grads class FP32SGDOptimizer(CollectiveOpBasedOptimizer): def __init__(self, optimizer, strategy=None): super(FP32SGDOptimizer, self).__init__(optimizer, strategy) def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): opts, param_and_grads = self._optimizer.minimize(loss) config = fluid.DistributeTranspilerConfig() config.mode = 'collective' config.collective_mode = 'grad_allreduce' t = fluid.DistributeTranspiler(config=config) t.transpile( trainer_id=fleet.worker_index(), trainers=fleet.worker_endpoints(), current_endpoint=fleet.worker_endpoints()[fleet.worker_index()], startup_program=startup_program, program=loss.block.program) return opts, param_and_grads class CollectiveOptimizer(DistributedOptimizer): """ DistributedOptimizer is a wrapper for paddle.fluid.optimizer A user should pass a paddle.fluid.optimizer to DistributedOptimizer minimize() function is implemented. DistributedOptimizer is the starting point for a user who wants to run distributed training. The optimized information will be stored in Fleet() instance who holds the global information about current distributed training. """ def __init__(self, optimizer, strategy=None): super(CollectiveOptimizer, self).__init__(optimizer, strategy) self.strategy = strategy def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): return self._optimizer.backward(loss, startup_program, parameter_list, no_grad_set, callbacks) def apply_gradients(self, params_grads): return self._optimizer.apply_gradients(params_grads) def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): """ minimize a program through loss Args: loss (Variable|Variable List): loss variable or loss variable list to run optimization. startup_program (Program): startup_program for initializing parameters in `parameter_list`. parameter_list (list): list of Variables to update. no_grad_set (set|None): set of Variables should be ignored. Returns: tuple: (optimize_ops, params_grads) which are, list of operators appended; and list of (param, grad) Variables pair for optimization. Note that in parameter server mode, a worker will not get anything about optimize_os Because optmizer algorithms run on pserver side. We will make this usable in pserver process, but currently the optimization part is written into Fleet(). A user does not need to care about how to startup a pserver node. """ optimize_ops, param_grads = self._optimizer.minimize( loss, startup_program, parameter_list, no_grad_set) worker_endpoints = fleet.worker_endpoints() trainer_id = fleet.worker_index() current_endpoint = fleet.worker_endpoints()[trainer_id] startup_program = startup_program if startup_program else \ fluid.framework.default_startup_program # call transpiler config = dist_transpiler.DistributeTranspilerConfig() config.mode = "nccl2" t = dist_transpiler.DistributeTranspiler(config=config) t.transpile( trainer_id, trainers=','.join(worker_endpoints), startup_program=startup_program, current_endpoint=current_endpoint) return optimize_ops, param_grads