#include "sgd_optimizer.h" #include "serialization.h" namespace paddle { namespace optimizer { void SGDOptimizer::Update(const Tensor *gradient) { num_sample_passed_ += 1; double learning_rate = lr_policy_->LearningRate(num_sample_passed_); float velocity = 0.0; Tensor ¶m = *parameter_; const Tensor &grad = *gradient; Tensor &m = *momentums_; for (size_t i = 0; i < param.size(); ++i) { if (momentum_ == 0.0) { velocity = -learning_rate * grad[i] - learning_rate * decay_ * param[i]; } else { m[i] = momentum_ * m[i] - learning_rate * grad[i] - learning_rate * decay_ * param[i]; velocity = m[i]; } if (nesterov_) { param[i] += momentum_ * velocity - learning_rate * grad[i]; } else { param[i] += velocity; } } } const char *SGDOptimizer::SerializeState(int *state_len) { SGDOptimizerState state; state.set_learning_rate(lr_policy_->LearningRate(num_sample_passed_)); state.set_num_sample_passed(num_sample_passed_); TensorToProto(*parameter_, state.mutable_parameter()); TensorToProto(*momentums_, state.mutable_momentums()); *state_len = CalStateSize(parameter_, momentums_); return state.SerializeAsString().c_str(); } void SGDOptimizer::DeserializeState(const std::string &str) { SGDOptimizerState state; state.ParseFromString(str); lr_policy_->set(state.learning_rate()); num_sample_passed_ = state.num_sample_passed(); ProtoToTensor(state.parameter(), parameter_); ProtoToTensor(state.parameter(), momentums_); } } // namespace optimizer } // namespace paddle