# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import paddle import paddle.nn.quant.quant_layers as quant_layers from ..utils import _get_op_input_var_names, _get_op_output_var_names, _get_output_name_index, _get_input_name_index layer_name_map = { 'Conv2DTranspose': paddle.nn.Conv2DTranspose, 'Conv2D': paddle.nn.Conv2D, 'Linear': paddle.nn.Linear, 'AdaptiveAvgPool2D': paddle.nn.AdaptiveAvgPool2D, 'AdaptiveMaxPool2D': paddle.nn.AdaptiveMaxPool2D, 'AvgPool2D': paddle.nn.AvgPool2D, 'MaxPool2D': paddle.nn.MaxPool2D, 'Hardswish': paddle.nn.Hardswish, 'LeakyReLU': paddle.nn.LeakyReLU, 'PReLU': paddle.nn.PReLU, 'ReLU': paddle.nn.ReLU, 'ReLU6': paddle.nn.ReLU6, 'Sigmoid': paddle.nn.Sigmoid, 'Softmax': paddle.nn.Softmax, 'Swish': paddle.nn.Swish, 'Tanh': paddle.nn.Tanh, 'Hardswish': paddle.nn.Hardswish, 'BatchNorm': paddle.nn.BatchNorm, 'GroupNorm': paddle.nn.GroupNorm, 'LayerNorm': paddle.nn.LayerNorm, } # Apply fake quant for the inputs of these layers fake_quant_input_layers = [ paddle.nn.Conv2D, paddle.nn.Linear, paddle.nn.Conv2DTranspose ] # Apply fake quant for the output of these layers # TODO(jc): fix the problem of adding duplicate fake_quant ops # paddle.nn.AdaptiveAvgPool2D, paddle.nn.AvgPool2D, paddle.nn.ReLU,paddle.nn.LeakyReLU fake_quant_output_layers = [ paddle.nn.quant.add, paddle.nn.quant.subtract, paddle.nn.quant.multiply, paddle.nn.quant.divide ] fake_quant_leaf_layers = [ quant_layers.FakeQuantAbsMax, quant_layers.FakeQuantChannelWiseAbsMax, quant_layers.FakeQuantMovingAverageAbsMax, quant_layers.MovingAverageAbsMaxScale, ] fake_quant_wrap_layers = [ quant_layers.QuantizedConv2D, quant_layers.QuantizedLinear, quant_layers.QuantizedConv2DTranspose ] # The weight format of these layers is Cin * Cout * H * W spec_channel_axis_layers = [paddle.nn.Conv2DTranspose, paddle.nn.Linear] weight_op_types = [ "conv2d", "depthwise_conv2d", "matmul", "conv2d_transpose", "depthwise_conv2d_transpose" ] fake_quantize_dequantize_op_types = [ "fake_quantize_dequantize_abs_max", "fake_channel_wise_quantize_dequantize_abs_max", "fake_quantize_dequantize_moving_average_abs_max" ] def load_variable_data(scope, var_name): """ Load variable value from scope """ var_node = scope.find_var(var_name) assert var_node is not None, \ "Can not find " + var_name + " in the scope." return np.array(var_node.get_tensor()) def find_previous_op(block, var_name): """ Find the previous op for the input variable. """ for op in block.ops: if var_name in op.output_arg_names: return op return None def find_next_ops(block, var_name): """ Find all followed ops for the input variable. """ res_ops = [] for op in block.ops: if var_name in op.input_arg_names: res_ops.append(op) return res_ops def find_parent_layer_and_sub_name(model, name): """ Given the model and the name of a layer, find the parent layer and the sub_name of the layer. For example, if name is 'block_1/convbn_1/conv_1', the parent layer is 'block_1/convbn_1' and the sub_name is `conv_1`. Args: model(paddle.nn.Layer): the model to be quantized. name(string): the name of a layer Returns: parent_layer, subname """ assert isinstance(model, paddle.nn.Layer), \ "The model must be the instance of paddle.nn.Layer." assert len(name) > 0, "The input (name) should not be empty." last_idx = 0 idx = 0 parent_layer = model while idx < len(name): if name[idx] == '.': sub_name = name[last_idx:idx] if hasattr(parent_layer, sub_name): parent_layer = getattr(parent_layer, sub_name) last_idx = idx + 1 idx += 1 sub_name = name[last_idx:idx] return parent_layer, sub_name def program_all_ops(program): """ Return all ops for the input program. """ all_ops = [] for block in program.blocks: for op in block.ops: all_ops.append(op) return all_ops def is_leaf_layer(layer): """ Whether the layer is leaf layer. """ return isinstance(layer, paddle.nn.Layer) \ and len(layer.sublayers()) == 0 def fp_numpy_to_naive(x_np): """ Convert numpy to float or list. """ if x_np.size == 1: return float(x_np) else: return x_np.tolist()