/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #define GLOG_NO_ABBREVIATED_SEVERITIES #define GOOGLE_GLOG_DLL_DECL #include "paddle/fluid/platform/cudnn_helper.h" #include TEST(CudnnHelper, ScopedTensorDescriptor) { using paddle::platform::ScopedTensorDescriptor; using paddle::platform::DataLayout; ScopedTensorDescriptor tensor_desc; std::vector shape = {2, 4, 6, 6}; auto desc = tensor_desc.descriptor(DataLayout::kNCHW, shape); cudnnDataType_t type; int nd; std::vector dims(4); std::vector strides(4); paddle::platform::dynload::cudnnGetTensorNdDescriptor( desc, 4, &type, &nd, dims.data(), strides.data()); EXPECT_EQ(nd, 4); for (size_t i = 0; i < dims.size(); ++i) { EXPECT_EQ(dims[i], shape[i]); } EXPECT_EQ(strides[3], 1); EXPECT_EQ(strides[2], 6); EXPECT_EQ(strides[1], 36); EXPECT_EQ(strides[0], 144); // test tensor5d: ScopedTensorDescriptor ScopedTensorDescriptor tensor5d_desc; std::vector shape_5d = {2, 4, 6, 6, 6}; auto desc_5d = tensor5d_desc.descriptor(DataLayout::kNCDHW, shape_5d); std::vector dims_5d(5); std::vector strides_5d(5); paddle::platform::dynload::cudnnGetTensorNdDescriptor( desc_5d, 5, &type, &nd, dims_5d.data(), strides_5d.data()); EXPECT_EQ(nd, 5); for (size_t i = 0; i < dims_5d.size(); ++i) { EXPECT_EQ(dims_5d[i], shape_5d[i]); } EXPECT_EQ(strides_5d[4], 1); EXPECT_EQ(strides_5d[3], 6); EXPECT_EQ(strides_5d[2], 36); EXPECT_EQ(strides_5d[1], 216); EXPECT_EQ(strides_5d[0], 864); } TEST(CudnnHelper, ScopedFilterDescriptor) { using paddle::platform::ScopedFilterDescriptor; using paddle::platform::DataLayout; ScopedFilterDescriptor filter_desc; std::vector shape = {2, 3, 3}; auto desc = filter_desc.descriptor(DataLayout::kNCHW, shape); cudnnDataType_t type; int nd; cudnnTensorFormat_t format; std::vector kernel(3); paddle::platform::dynload::cudnnGetFilterNdDescriptor(desc, 3, &type, &format, &nd, kernel.data()); EXPECT_EQ(GetCudnnTensorFormat(DataLayout::kNCHW), format); EXPECT_EQ(nd, 3); for (size_t i = 0; i < shape.size(); ++i) { EXPECT_EQ(kernel[i], shape[i]); } ScopedFilterDescriptor filter_desc_4d; std::vector shape_4d = {2, 3, 3, 3}; auto desc_4d = filter_desc.descriptor(DataLayout::kNCDHW, shape_4d); std::vector kernel_4d(4); paddle::platform::dynload::cudnnGetFilterNdDescriptor( desc_4d, 4, &type, &format, &nd, kernel_4d.data()); EXPECT_EQ(GetCudnnTensorFormat(DataLayout::kNCHW), format); EXPECT_EQ(nd, 4); for (size_t i = 0; i < shape_4d.size(); ++i) { EXPECT_EQ(kernel_4d[i], shape_4d[i]); } } TEST(CudnnHelper, ScopedConvolutionDescriptor) { using paddle::platform::ScopedConvolutionDescriptor; ScopedConvolutionDescriptor conv_desc; std::vector src_pads = {2, 2, 2}; std::vector src_strides = {1, 1, 1}; std::vector src_dilations = {1, 1, 1}; auto desc = conv_desc.descriptor(src_pads, src_strides, src_dilations); cudnnDataType_t type; cudnnConvolutionMode_t mode; int nd; std::vector pads(3); std::vector strides(3); std::vector dilations(3); paddle::platform::dynload::cudnnGetConvolutionNdDescriptor( desc, 3, &nd, pads.data(), strides.data(), dilations.data(), &mode, &type); EXPECT_EQ(nd, 3); for (size_t i = 0; i < src_pads.size(); ++i) { EXPECT_EQ(pads[i], src_pads[i]); EXPECT_EQ(strides[i], src_strides[i]); EXPECT_EQ(dilations[i], src_dilations[i]); } EXPECT_EQ(mode, CUDNN_CROSS_CORRELATION); } TEST(CudnnHelper, ScopedPoolingDescriptor) { using paddle::platform::ScopedPoolingDescriptor; using paddle::platform::PoolingMode; ScopedPoolingDescriptor pool_desc; std::vector src_kernel = {2, 2, 5}; std::vector src_pads = {1, 1, 2}; std::vector src_strides = {2, 2, 3}; auto desc = pool_desc.descriptor(PoolingMode::kMaximum, src_kernel, src_pads, src_strides); cudnnPoolingMode_t mode; cudnnNanPropagation_t nan_t = CUDNN_PROPAGATE_NAN; int nd; std::vector kernel(3); std::vector pads(3); std::vector strides(3); paddle::platform::dynload::cudnnGetPoolingNdDescriptor( desc, 3, &mode, &nan_t, &nd, kernel.data(), pads.data(), strides.data()); EXPECT_EQ(nd, 3); for (size_t i = 0; i < src_pads.size(); ++i) { EXPECT_EQ(kernel[i], src_kernel[i]); EXPECT_EQ(pads[i], src_pads[i]); EXPECT_EQ(strides[i], src_strides[i]); } EXPECT_EQ(mode, CUDNN_POOLING_MAX); }