// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/lite/core/kernel.h" #include "paddle/fluid/lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { template using EigenMatrix = framework::EigenMatrix; template class DropoutCompute : public KernelLite { public: using param_t = operators::DropoutParam; void Run() override { auto& param = *param_.get_mutable(); const auto* x_data = param.x->data(); auto* out_data = param.output->template mutable_data(); if (!param.is_test) { auto* mask_data = param.mask->template mutable_data(); std::random_device rnd; std::minstd_rand engine; int seed = param.fix_seed ? param.seed : rnd(); engine.seed(seed); std::uniform_real_distribution dist(0, 1); size_t size = framework::product(param.mask->dims().data()); for (size_t i = 0; i < size; ++i) { if (dist(engine) < param.dropout_prob) { mask_data[i] = 0; out_data[i] = 0; } else { if (param.dropout_implementation == "upscale_in_train") { mask_data[i] = 1.0f / static_cast(1.0f - param.dropout_prob); out_data[i] = x_data[i] / static_cast(1.0f - param.dropout_prob); } else { mask_data[i] = 1; out_data[i] = x_data[i]; } } } } else { auto X = EigenMatrix::Reshape(param.x->raw_tensor(), 1); auto Y = EigenMatrix::Reshape(param.output->raw_tensor(), 1); auto& place = *platform::CPUDeviceContext().eigen_device(); if (param.dropout_implementation == "upscale_in_train") { Y.device(place) = X; } else { Y.device(place) = X * static_cast(1.0f - param.dropout_prob); } } } virtual ~DropoutCompute() = default; }; } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(dropout, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::DropoutCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Mask", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize();