# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from .. import core from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator from ..layers.layer_function_generator import OpProtoHolder from . import no_grad from .. import framework import numpy as np import warnings from paddle import _C_ops _supported_int_dtype_ = [ core.VarDesc.VarType.UINT8, core.VarDesc.VarType.INT8, core.VarDesc.VarType.INT16, core.VarDesc.VarType.INT32, core.VarDesc.VarType.INT64, core.VarDesc.VarType.BOOL, ] # NOTE(chenweihang): We currently do not fully support the type promotion # between tensors. Parting support here is because the interoperation of # real and complex numbers in paddle quantum is very frequent, such as the # binary operation between `float` and `complex64`, so we must support the # correct type promotion on the APIs paddle quantum used. # Now only check in dygraph (paddle quantum based dygraph) # Full type promotion support will need to be fully verified later. _supported_promote_complex_types_ = [ '__add__', '__radd__', '__sub__', '__rsub__', '__mul__', '__rmul__', '__div__', '__truediv__', '__rdiv__', '__rtruediv__', '__matmul__', ] _complex_dtypes = [ core.VarDesc.VarType.COMPLEX64, core.VarDesc.VarType.COMPLEX128, ] _already_patch_varbase = False _already_patch_eager_tensor = False def monkey_patch_math_varbase(): """ Similar to monkey_patch_variable. The difference is, in dygraph mode, use auto-generated op functions for better performance. """ @no_grad def create_tensor(value, dtype, shape): out = _varbase_creator(dtype=dtype) out = _C_ops.fill_constant(out, 'dtype', dtype, 'shape', shape, 'value', value, 'force_cpu', False) out.stop_gradient = True return out def create_scalar(value, dtype): return create_tensor(value, dtype, shape=[1]) def astype(self, dtype): """ Cast a Tensor to a specified data type. Args: dtype: The target data type. Returns: Tensor: a new Tensor with target dtype Examples: .. code-block:: python import paddle import numpy as np original_tensor = paddle.ones([2, 2]) print("original tensor's dtype is: {}".format(original_tensor.dtype)) new_tensor = original_tensor.astype('float32') print("new tensor's dtype is: {}".format(new_tensor.dtype)) """ if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) return _C_ops.cast(self, 'in_dtype', self.dtype, 'out_dtype', dtype) def _scalar_elementwise_op_(var, scale, bias): return _C_ops.scale(var, 'scale', scale, 'bias', bias) def _neg_(var): return _scalar_elementwise_op_(var, -1.0, 0.0) def _float_(var): numel = np.prod(var.shape) assert numel == 1, "only one element variable can be converted to float." tensor = var.value().get_tensor() assert tensor._is_initialized(), "variable's tensor is not initialized" return float(var.numpy().flatten()[0]) def _long_(var): numel = np.prod(var.shape) assert numel == 1, "only one element variable can be converted to long." tensor = var.value().get_tensor() assert tensor._is_initialized(), "variable's tensor is not initialized" return int(var.numpy().flatten()[0]) def _int_(var): numel = np.prod(var.shape) assert numel == 1, "only one element variable can be converted to int." tensor = var.value().get_tensor() assert tensor._is_initialized(), "variable's tensor is not initialized" return int(var.numpy().flatten()[0]) def _len_(var): if var.type == core.VarDesc.VarType.VOCAB: return len(var.value().get_map_tensor()) elif var.type == core.VarDesc.VarType.STRINGS: return len(var.value().get_string_tensor()) else: return var.shape[0] def _index_(var): numel = np.prod(var.shape) assert numel == 1, "only one element variable can be converted to python index." tensor = var.value().get_tensor() assert tensor._is_initialized(), "variable's tensor is not initialized" return int(var.numpy().flatten()[0]) @property def _ndim_(var): return len(var.shape) @property def _size_(var): return np.prod(var.shape) @property def _T_(var): if len(var.shape) == 1: return var perm = [] for i in range(len(var.shape)): perm.insert(0, i) out, _ = _C_ops.transpose2(var, 'axis', perm) return out def _scalar_add_(var, value): return _scalar_elementwise_op_(var, 1.0, value) def _scalar_sub_(var, value): return _scalar_elementwise_op_(var, 1.0, -value) def _scalar_rsub_(var, value): return _scalar_elementwise_op_(var, -1.0, value) def _scalar_mul_(var, value): return _scalar_elementwise_op_(var, value, 0.0) def _scalar_div_(var, value): return _scalar_elementwise_op_(var, 1.0 / value, 0.0) # for binary operator such as elementwise, compare def _binary_creator_(method_name, op_type, reverse=False, scalar_method=None): def __impl__(self, other_var): # 1. scalar exists cases # we need combine the tensor.dtype and scalar.dtype, cast correct object if isinstance(other_var, float): # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float if self.dtype in _supported_int_dtype_: self = astype(self, 'float32') # here use `scale` replace `elementwise` to get better performance # but only +, -, *, / can use this method if scalar_method is not None: return scalar_method(self, other_var) elif isinstance(other_var, int): # in all cases(+, -, *, /, **, //, %), we can cast it to float # because the output tensor.dtype depend on the type of input tensor other_var = float(other_var) # division is a special case # NOTE(chenweihang): because we cast tensor to float32 instead float64, # the division result can only guarantee the numerical accuracy of 6 digits # after the decimal point. The result of numpy calculation is of float64 type, # so the calculation result here and the calculation result of numpy are # different after 6 decimal point. If necessary, we can also use float64 here. # torch's behavior here is consistent with ours if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_: self = astype(self, 'float32') # here use `scale` replace `elementwise` to get better performance # but only +, -, *, / can use this method if scalar_method is not None: return scalar_method(self, other_var) else: # do nothing pass # 2. create varbase for scalar lhs_dtype = self.dtype if framework._in_eager_mode_: other_var_should_be = core.eager.Tensor else: other_var_should_be = core.VarBase if not isinstance(other_var, other_var_should_be): if isinstance(other_var, complex): import paddle other_var = paddle.to_tensor(other_var, dtype='complex64') else: if reverse: other_var = create_tensor( other_var, dtype=lhs_dtype, shape=self.shape) else: # add fill_op other_var = create_scalar( value=other_var, dtype=lhs_dtype) # 3. promote types or unify right var type to left var rhs_dtype = other_var.dtype if lhs_dtype != rhs_dtype: if method_name in _supported_promote_complex_types_ and ( lhs_dtype in _complex_dtypes or rhs_dtype in _complex_dtypes): # only when lhs_dtype or rhs_dtype is complex type, # the dtype will promote, in other cases, directly # use lhs_dtype, this is consistent will original rule promote_dtype = core._promote_types_if_complex_exists( lhs_dtype, rhs_dtype) self = self if lhs_dtype == promote_dtype else astype( self, promote_dtype) other_var = other_var if rhs_dtype == promote_dtype else astype( other_var, promote_dtype) else: warnings.warn( 'The dtype of left and right variables are not the same, left dtype is {}, but right dtype is {}, the right dtype will convert to {}'. format(lhs_dtype, rhs_dtype, lhs_dtype)) other_var = astype(other_var, lhs_dtype) if reverse: tmp = self self = other_var other_var = tmp if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_: self = astype(self, 'float32') other_var = astype(other_var, 'float32') # 4. calculation axis = -1 if framework._in_eager_mode_ and op_type == 'elementwise_add': math_op = getattr(_C_ops, 'final_state_add') else: math_op = getattr(_C_ops, op_type) return math_op(self, other_var, 'axis', axis) comment = OpProtoHolder.instance().get_op_proto(op_type).comment __impl__.__doc__ = """ {0} Args: other_var(Tensor|float|int): right hand Tensor Returns: Tensor """.format(comment) __impl__.__name__ = method_name return __impl__ varbase_methods = [ ('__neg__', _neg_), ('__float__', _float_), ('__long__', _long_), ('__int__', _int_), ('__len__', _len_), ('__index__', _index_), ('astype', astype), ('dim', lambda x: len(x.shape)), ('ndimension', lambda x: len(x.shape)), ('ndim', _ndim_), ('size', _size_), ('T', _T_), ('__add__', _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)), ## a+b == b+a. Do not need to reverse explicitly ('__radd__', _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)), ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)), ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)), ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)), ## a*b == b*a. Do not need to reverse explicitly ('__rmul__', _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)), ('__div__', _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)), ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div', False, _scalar_div_)), ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True, None)), ('__rtruediv__', _binary_creator_('rtruediv__', 'elementwise_div', True, None)), ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False, None)), ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True, None)), ('__floordiv__', _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)), ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False, None)), ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False, None)), ## for logical compare ('__eq__', _binary_creator_('__eq__', 'equal', False, None)), ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)), ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)), ('__le__', _binary_creator_('__le__', 'less_equal', False, None)), ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)), ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)), ('__array_ufunc__', None) ] global _already_patch_varbase global _already_patch_eager_tensor if framework._in_eager_mode_: local_already_patch = _already_patch_eager_tensor _already_patch_eager_tensor = True local_tensor = core.eager.Tensor else: local_already_patch = _already_patch_varbase _already_patch_varbase = True local_tensor = core.VarBase if not local_already_patch: for method in varbase_methods: method_name = method[0] method_impl = method[1] setattr(local_tensor, method_name, method_impl) else: import paddle.tensor # Tensor method from module paddle.tensor for method_name in paddle.tensor.tensor_method_func: if hasattr(local_tensor, method_name): continue method_impl = getattr(paddle.tensor, method_name, None) if method_impl: setattr(local_tensor, method_name, method_impl) for magic_method, origin_method in paddle.tensor.magic_method_func: impl = getattr(paddle.tensor, origin_method, None) if impl: setattr(local_tensor, magic_method, impl)