// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #ifndef _WIN32 #include #endif #include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/pybind/pybind.h" #include "paddle/fluid/string/string_helper.h" #ifdef PADDLE_WITH_ASCEND_CL #include "paddle/fluid/framework/fleet/ascend_wrapper.h" #endif // NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are // determined by the OP`s proto automatically, i.e., all the inputs registered // in OpMaker. // However, some OPs have dispensable inputs, which means the input can // be none for some conditions. It is discovered that most dispensable inputs // is not used in imperative mode, so we drop those inputs when generating OP // functions. While, for very few OPs, the dispensable inputs are used, we // need to manually specify them in this map. std::map> op_ins_map = { {"layer_norm", {"X", "Scale", "Bias"}}, {"fused_attention", {"X", "LnScale", "LnBias", "QKVW", "QKVBias", "SrcMask", "OutLinearW", "OutLinearBias", "Ln2Scale", "Ln2Bias"}}, {"instance_norm", {"X", "Scale", "Bias"}}, {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}}, {"label_smooth", {"X", "PriorDist"}}, {"assign", {"X"}}, {"reshape2", {"X", "Shape"}}, {"expand", {"X", "ExpandTimes"}}, {"slice", {"Input", "StartsTensor", "EndsTensor"}}, {"fake_quantize_dequantize_moving_average_abs_max", {"X", "InScale", "InAccum", "InState"}}, {"nll_loss", {"X", "Label", "Weight"}}, {"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}}, {"gather", {"X", "Index", "Axis"}}, {"roi_pool", {"X", "ROIs", "RoisNum"}}, {"roi_align", {"X", "ROIs", "RoisNum"}}, {"psroi_pool", {"X", "ROIs", "RoisNum"}}, {"collect_fpn_proposals", {"MultiLevelRois", "MultiLevelScores", "MultiLevelRoIsNum"}}, {"distribute_fpn_proposals", {"FpnRois", "RoisNum"}}, {"warpctc", {"Logits", "Label", "LogitsLength", "LabelLength"}}, {"hierarchical_sigmoid", {"X", "W", "Label", "PathTable", "PathCode", "Bias"}}, {"moving_average_abs_max_scale", {"X", "InAccum", "InState"}}, {"multiclass_nms3", {"BBoxes", "Scores", "RoisNum"}}, {"box_coder", {"PriorBox", "PriorBoxVar", "TargetBox"}}, {"momentum", {"Param", "Grad", "Velocity", "LearningRate", "MasterParam"}}, {"sparse_momentum", {"Param", "Grad", "Velocity", "Index", "LearningRate"}}, {"rnn", {"Input", "PreState", "WeightList", "SequenceLength"}}, {"run_program", {"X", "Params"}}, {"fused_feedforward", {"Dropout1Seed", "Dropout2Seed", "Linear1Bias", "Linear2Bias", "Ln1Scale", "Ln1Bias", "Ln2Scale", "Ln2Bias"}}, {"faster_tokenizer", {"Text", "Vocab", "TextPair"}}, {"matrix_rank", {"X", "TolTensor"}}, {"adam", {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow", "Beta2Pow", "MasterParam"}}, {"adamw", {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow", "Beta2Pow", "MasterParam"}}, }; // NOTE(zhiqiu): Like op_ins_map. // Commonly, the outputs in auto-generated OP function are determined by the // OP`s proto automatically, i.e., all the outputs registered in OpMaker. // However, some OPs have dispensable outputs, which means the output can // be none for some conditions. It is discovered that most dispensable outputs // is not used in imperative mode, so we drop those outputs when generating OP // functions. While, for very few OPs, the dispensable outputs are used, we // need to manually specify them in this map. std::map> op_outs_map = { {"fake_quantize_dequantize_moving_average_abs_max", {"Out", "OutScale", "OutAccum", "OutState"}}, {"batch_norm", {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance", "ReserveSpace"}}, {"fused_attention", {"LnMean", "LnVariance", "LnOut", "QKVOut", "QKVBiasOut", "TransposeOut2", "QKOut", "QKTVOut", "SoftmaxOut", "AttnDropoutMaskOut", "AttnDropoutOut", "SrcMaskOut", "FMHAOut", "OutLinearOut", "DropoutMaskOut", "Ln2Mean", "Ln2Variance", "BiasDropoutResidualOut", "Y"}}, {"sync_batch_norm", {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance", "ReserveSpace"}}, {"unique", {"Out", "Index", "Indices", "Counts"}}, {"unique_consecutive", {"Out", "Index", "Counts"}}, {"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}}, {"collect_fpn_proposals", {"FpnRois", "RoisNum"}}, {"matrix_nms", {"Out", "Index", "RoisNum"}}, {"distribute_fpn_proposals", {"MultiFpnRois", "RestoreIndex", "MultiLevelRoIsNum"}}, {"moving_average_abs_max_scale", {"Out", "OutScale", "OutAccum", "OutState"}}, {"multiclass_nms3", {"Out", "NmsRoisNum"}}, {"generate_proposals_v2", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}}, {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}}, {"sparse_momentum", {"ParamOut", "VelocityOut"}}, {"rnn", {"DropoutState", "Reserve", "Out", "State"}}, {"lamb", {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}}, {"run_program", {"DOut"}}, {"adam", {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut", "MasterParamOut"}}, {"adamw", {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut", "MasterParamOut"}}, }; // NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are // generated in C++ automatically. // However, some OPs need to pass the outputs from Python instead of generating // them in C++. There are mainly 2 reasons for that, // (1) Optimizer OPs need to update the input param in-place, like sgd. // So they need to pass the output which is same as input param. // (2) Very few python APIs has out in their arguments, like fill_constant. // So they need to pass the python output to C++. // Actually, this is not a good design, since it may break the SSA graph, // especially in declarative mode. // For those OPs, we need to manually specify the outs need to pass in this map. std::map> op_passing_outs_map = { {"sgd", {"ParamOut"}}, {"adam", {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut", "MasterParamOut"}}, {"adamw", {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut", "MasterParamOut"}}, {"average_accumulates", {"out_sum_1", "out_sum_2", "out_sum_3", "out_num_accumulates", "out_old_num_accumulates", "out_num_updates"}}, {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}}, {"sparse_momentum", {"ParamOut", "VelocityOut"}}, {"batch_norm", {"MeanOut", "VarianceOut"}}, {"sync_batch_norm", {"MeanOut", "VarianceOut"}}, {"accuracy", {"Correct", "Total"}}, {"fill_constant", {"Out"}}, {"recv_v2", {"Out"}}, {"partial_recv", {"Out"}}, {"matmul", {"Out"}}, {"c_broadcast", {"Out"}}, {"c_sync_calc_stream", {"Out"}}, {"c_sync_comm_stream", {"Out"}}, {"c_reduce_sum", {"Out"}}, {"c_reduce_max", {"Out"}}, {"c_reduce_min", {"Out"}}, {"c_reduce_prod", {"Out"}}, {"c_reduce", {"Out"}}, {"c_scatter", {"Out"}}, {"barrier", {"Out"}}, {"fake_quantize_dequantize_moving_average_abs_max", {"Out", "OutScale", "OutAccum", "OutState"}}, {"fake_quantize_dequantize_abs_max", {"Out", "OutScale"}}, {"fake_channel_wise_quantize_dequantize_abs_max", {"Out", "OutScale"}}, {"check_finite_and_unscale", {"Out", "FoundInfinite"}}, {"update_loss_scaling", {"Out", "LossScaling", "OutGoodSteps", "OutBadSteps"}}, {"moving_average_abs_max_scale", {"Out", "OutScale", "OutAccum", "OutState"}}, {"lamb", {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}}, {"rnn", {"DropoutState"}}, {"run_program", {"Out", "DOut", "OutScope"}}, {"clear_float_status", {"FloatStatusOut"}}, {"get_float_status", {"FloatStatusOut"}}, }; // NOTE(pangyoki): Tensor View Strategy. // In this case, a new output varbase will be created, and this varbase will // reuse the input varbase's allocation. // It's a map. The key of outer map is the view op name, the value is // a pair which implies the mapping relationship between the input and // output varbase. std::map> view_op_map = { {"squeeze2", {"X", "Out"}}, // "X" -> "Out" {"unsqueeze2", {"X", "Out"}}, {"reshape2", {"X", "Out"}}, {"flatten_contiguous_range", {"X", "Out"}}, }; // NOTE(pangyoki): Inplace OP with duplicable input. // The set includes inplace ops that have duplicable input. // The first Varbase in input needs to be specified for the inplace strategy // and share Varbase with the output. std::set inplace_op_duplicable_ins_set = { "sum", }; // clang-format off const char* OUT_INITIALIZER_TEMPLATE = R"({"%s", {std::shared_ptr(new imperative::VarBase("auto_"+std::to_string(VarBaseUniqueNameID++)+"_"))}})"; const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})"; const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})"; const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})"; const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"( if (%s != nullptr) { ins["%s"] = {%s}; } )"; const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"( if (%s.size() != 0) { ins["%s"] = %s; } )"; const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"( outs["%s"] = {%s}; )"; const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"( outs["%s"] = %s; )"; // if inputs is list, no need {} const char* ARG_OUT_NUM = R"(%sNum)"; const char* ARG_OUT_NUM_TYPE = R"(size_t )"; const char* IN_VAR_TYPE = R"(py::handle)"; const char* IN_VAR_LIST_TYPE = R"(py::handle)"; const char* OUT_VAR_TYPE = R"(std::shared_ptr)"; const char* OUT_VAR_LIST_TYPE = R"(std::vector>)"; const char* CAST_VAR_TEMPLATE = R"( auto %s = GetVarBaseFromArgs("%s", "%s", args, %d, %s);)"; const char* CAST_VAR_LIST_TEMPLATE = R"( auto %s = GetVarBaseListFromArgs("%s", "%s", args, %d, %s);)"; const char* CAST_SIZE_T_TEMPLATE = R"( auto %s = GetUnsignedLongFromArgs("%s", "%s", args, %d, %s);)"; const char* ARG_TEMPLATE = R"(const %s& %s)"; const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)"; const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))"; const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])"; const char* RETURN_TEMPLATE = R"(outs["%s"][0])"; const char* FUNCTION_ARGS = R"(%s, const py::args& args)"; const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)"; const char* HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT = R"( if (ins.count("%s") && outs.count("%s")) { HandleViewBetweenInputAndOutput(ins["%s"][0], outs["%s"][0]); })"; const char* INPLACE_DUPLICABLE_INPUT = R"([0])"; const char* INPLACE_LEAF_ERROR_MESSAGE = R"(Leaf Var (%s) that doesn't stop gradient can't use inplace strategy.)"; const char* INPLACE_STRATEGY_TEMPLATE = R"( PADDLE_ENFORCE_EQ( %s->IsLeaf() && !%s->OverridedStopGradient(), false, platform::errors::InvalidArgument("%s", %s->Name())); %s->BumpInplaceVersion(); VLOG(3) << "Var(" << %s->Name() << ") uses Inplace Strategy."; )"; const char* INPLACE_MAPPING_TEMPLATE = R"({"%s", "%s"})"; const char* OP_FUNCTION_TEMPLATE = R"( static PyObject * %s(PyObject *self, PyObject *args, PyObject *kwargs) { PyThreadState *tstate = nullptr; try { %s framework::AttributeMap attrs; ConstructAttrMapFromPyArgs("%s", args, %d, PyTuple_GET_SIZE(args) , attrs); tstate = PyEval_SaveThread(); %s imperative::NameVarBaseMap outs = %s; imperative::NameVarBaseMap ins = %s; %s imperative::GetCurrentTracer()->TraceOp("%s", ins, outs, attrs, {%s}); PyEval_RestoreThread(tstate); tstate = nullptr; %s } catch(...) { if (tstate) { PyEval_RestoreThread(tstate); } ThrowExceptionToPython(std::current_exception()); return nullptr; } })"; const char* PYBIND_ITEM_TEMPLATE = R"( {"%s", (PyCFunction)(void(*)(void))%s, METH_VARARGS | METH_KEYWORDS, "C++ interface function for %s in dygraph."},)"; // clang-format on static inline bool FindInsMap(const std::string& op_type, const std::string& in_name) { return op_ins_map[op_type].count(in_name); } static inline bool FindOutsMap(const std::string& op_type, const std::string& out_name) { return op_outs_map[op_type].count(out_name); } static inline bool FindPassingOutsMap(const std::string& op_type, const std::string& out_name) { return op_passing_outs_map[op_type].count(out_name); } static inline bool FindDuplicableInputInplaceOpSet(const std::string& op_type) { return inplace_op_duplicable_ins_set.count(op_type); } static inline bool FindViewOpMap(const std::string& op_type) { return view_op_map.count(op_type); } static inline std::string TempName(const std::string& name) { return name + '_'; } std::string GenerateOpFunctionsBody( const paddle::framework::proto::OpProto* op_proto, std::string func_name, bool use_inplace_strategy = false, std::map inplace_map = {}) { auto& op_type = op_proto->type(); std::string input_args = ""; std::string ins_initializer = "{"; std::string ins_initializer_with_null = ""; std::string py_arg = ""; int arg_idx = 0; int input_args_num = 0; std::string ins_cast_str = ""; std::string view_strategy_str = ""; std::string inplace_strategy_str = ""; for (auto& input : op_proto->inputs()) { auto& in_name = input.name(); // skip those dispensable inputs, like ResidualData in conv2d if (input.dispensable() && !FindInsMap(op_type, in_name)) { continue; } const auto in_type = input.duplicable() ? IN_VAR_LIST_TYPE : IN_VAR_TYPE; auto input_arg = paddle::string::Sprintf(ARG_TEMPLATE, in_type, TempName(in_name)); input_args += input_arg; input_args += ","; input_args_num++; const auto in_cast_type = input.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE; auto dispensable = input.dispensable() ? "true" : "false"; ins_cast_str += paddle::string::Sprintf(in_cast_type, in_name, op_type, in_name, arg_idx++, dispensable); if (input.dispensable()) { const auto in_template = input.duplicable() ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST : INPUT_INITIALIZER_TEMPLATE_WITH_NULL; ins_initializer_with_null += paddle::string::Sprintf(in_template, in_name, in_name, in_name); } else { const auto in_template = input.duplicable() ? INPUT_LIST_INITIALIZER_TEMPLATE : INPUT_INITIALIZER_TEMPLATE; ins_initializer += paddle::string::Sprintf(in_template, in_name, in_name); ins_initializer += ","; } } if (ins_initializer.back() == ',') { ins_initializer.pop_back(); } ins_initializer += "}"; if (!input_args.empty() && input_args.back() == ',') { input_args.pop_back(); } // Generate outs initializer std::string outs_initializer = "{"; std::string outs_initializer_with_null = ""; std::string inplace_mapping_str = ""; std::string return_str = ""; int outs_num = 0; for (auto& output : op_proto->outputs()) { auto& out_name = output.name(); // skip those dispensable oututs if (output.dispensable() && !FindOutsMap(op_type, out_name)) { continue; } const auto out_type = output.duplicable() ? OUT_VAR_LIST_TYPE : OUT_VAR_TYPE; const auto return_template = output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE; if (FindPassingOutsMap(op_type, out_name)) { if (input_args != "") { input_args += ","; } input_args += out_type; input_args += out_name; input_args_num++; if (output.dispensable()) { const auto out_template = output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL; outs_initializer_with_null += paddle::string::Sprintf(out_template, out_name, out_name); } else { const auto out_template = output.duplicable() ? INPUT_LIST_INITIALIZER_TEMPLATE : INPUT_INITIALIZER_TEMPLATE; outs_initializer += paddle::string::Sprintf(out_template, out_name, out_name); outs_initializer += ","; } const auto in_cast_type = output.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE; auto dispensable = output.dispensable() ? "true" : "false"; ins_cast_str += paddle::string::Sprintf(in_cast_type, out_name, op_type, out_name, arg_idx++, dispensable); } else if (use_inplace_strategy && inplace_map.count(out_name)) { PADDLE_ENFORCE_NE( inplace_map[out_name], "", paddle::platform::errors::InvalidArgument( "Inplace op %s has no input corresponding to output %s.", op_type, out_name)); // TODO(pangyoki): Inplace op don't have duplicable output in temporary, // so don't support duplicable output now. const auto out_template = INPUT_INITIALIZER_TEMPLATE; auto inplace_input_name = inplace_map[out_name]; inplace_mapping_str += paddle::string::Sprintf( INPLACE_MAPPING_TEMPLATE, inplace_input_name, out_name); inplace_mapping_str += ","; // If inplace op has duplicable input, the first Varbase in input will // share Varbase with output. if (FindDuplicableInputInplaceOpSet(op_type)) { inplace_input_name += INPLACE_DUPLICABLE_INPUT; } // Leaf Var that doesn't stop gradient can't use inplace strategy. // Increase inplace_version. inplace_strategy_str += paddle::string::Sprintf( INPLACE_STRATEGY_TEMPLATE, inplace_input_name, inplace_input_name, INPLACE_LEAF_ERROR_MESSAGE, inplace_input_name, inplace_input_name, inplace_input_name); outs_initializer += paddle::string::Sprintf(out_template, out_name, inplace_input_name); outs_initializer += ","; } else { // There are few Operators that have duplicable output, like `Out` in // split op. We need to specify the number of variables for the // duplicable output, as the argument OutNum; if (output.duplicable()) { if (input_args != "") { input_args += ","; } auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name); input_args += ARG_OUT_NUM_TYPE; input_args += out_num_str; input_args_num++; outs_initializer += paddle::string::Sprintf( OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str); auto dispensable = output.dispensable() ? "true" : "false"; ins_cast_str += paddle::string::Sprintf(CAST_SIZE_T_TEMPLATE, out_num_str, op_type, out_num_str, arg_idx++, dispensable); } else { outs_initializer += paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name); } outs_initializer += ","; } return_str += paddle::string::Sprintf(return_template, out_name); return_str += ","; outs_num += 1; } if (outs_initializer.back() == ',') { outs_initializer.pop_back(); return_str.pop_back(); } outs_initializer += "}"; if (!inplace_mapping_str.empty() && inplace_mapping_str.back() == ',') { inplace_mapping_str.pop_back(); } if (!use_inplace_strategy && FindViewOpMap(op_type)) { std::string viwe_input_name = view_op_map[op_type].first; std::string viwe_output_name = view_op_map[op_type].second; view_strategy_str += paddle::string::Sprintf( HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT, viwe_input_name, viwe_output_name, viwe_input_name, viwe_output_name); } if (outs_num == 0) { return_str = "Py_INCREF(Py_None);\n return Py_None;"; } else if (outs_num == 1) { return_str = "return MakeReturnPyObject(" + return_str + ");"; } else { return_str = "return MakeReturnPyObject(" + paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str) + ");"; } std::string function_args = ""; if (input_args == "") { function_args = FUNCTION_ARGS_NO_INPUT; } else { function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args); } // generate op funtcion body auto op_function_str = paddle::string::Sprintf( OP_FUNCTION_TEMPLATE, func_name, ins_cast_str, op_type, input_args_num, inplace_strategy_str, outs_initializer, ins_initializer, ins_initializer_with_null + outs_initializer_with_null + view_strategy_str, op_type, inplace_mapping_str, return_str); return op_function_str; } static std::tuple, std::vector> GenerateOpFunctions() { auto& op_info_map = paddle::framework::OpInfoMap::Instance().map(); std::vector op_function_list, bind_function_list; auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels(); for (auto& pair : op_info_map) { auto& op_info = pair.second; auto op_proto = op_info.proto_; if (op_proto == nullptr) { continue; } auto& op_type = op_proto->type(); // Skip ooerator which is not inherit form OperatorWithKernel, like while, // since only OperatorWithKernel can run in dygraph mode. if (!all_kernels.count(op_type)) { continue; } // NOTE(pangyoki): Inplace Strategy. // In this case, output will reuse input varbase. // Dygraph mode needs to be aligned with the in-place strategy in static // mode, and the mapping relationships between output and input that have // been defined in static mode should be used in dygraph mode. // Find which ops need to use Inplace strategy in static mode, and get the // mapping relationship between Inplace output and input. auto& infer_inplace = paddle::framework::OpInfoMap::Instance().Get(op_type).infer_inplace_; std::map inplace_map; if (infer_inplace) { auto in_to_outs = infer_inplace(true); for (auto& inplace_pair : in_to_outs) { inplace_map[inplace_pair.second] = inplace_pair.first; } } std::string func_name = "imperative_" + op_type; std::string op_function_str = GenerateOpFunctionsBody(op_proto, func_name); // generate pybind item auto bind_function_str = paddle::string::Sprintf( PYBIND_ITEM_TEMPLATE, op_type, func_name, op_type); op_function_list.emplace_back(std::move(op_function_str)); bind_function_list.emplace_back(std::move(bind_function_str)); if (infer_inplace) { // Reuse Varbase Inplace OP: op_type_. // The inplace OP needs a new implementation method. std::string inplace_op_type = op_type + "_"; std::string inplace_func_name = "imperative_" + inplace_op_type; std::string inplace_op_function_str = GenerateOpFunctionsBody( op_proto, inplace_func_name, true, inplace_map); // generate pybind item auto inplace_bind_function_str = paddle::string::Sprintf(PYBIND_ITEM_TEMPLATE, inplace_op_type, inplace_func_name, inplace_op_type); op_function_list.emplace_back(std::move(inplace_op_function_str)); bind_function_list.emplace_back(std::move(inplace_bind_function_str)); } } return std::make_tuple(op_function_list, bind_function_list); } int main(int argc, char* argv[]) { if (argc != 2) { std::cerr << "argc must be 2" << std::endl; return -1; } #ifdef PADDLE_WITH_ASCEND_CL auto ascend_ptr = paddle::framework::AscendInstance::GetInstance(); ascend_ptr->InitGEForUT(); #endif std::vector headers{"\"paddle/fluid/imperative/tracer.h\"", "\"pybind11/detail/common.h\"", ""}; std::ofstream out(argv[1], std::ios::out); out << "#pragma once\n\n"; for (auto& header : headers) { out << "#include " + header + "\n"; } out << "\n\n"; auto op_funcs = GenerateOpFunctions(); out << "namespace paddle {\n" << "namespace pybind {\n\n"; out << "std::atomic VarBaseUniqueNameID{0};\n"; out << paddle::string::join_strings(std::get<0>(op_funcs), '\n'); out << "\n\n"; out << "static PyMethodDef ExtestMethods[] = {\n" << paddle::string::join_strings(std::get<1>(op_funcs), '\n') << "\n {nullptr,nullptr,0,nullptr}" << "};\n\n"; out << "inline void BindOpFunctions(pybind11::module *module) {\n" << " auto m = module->def_submodule(\"ops\");\n" << " if (PyModule_AddFunctions(m.ptr(), ExtestMethods) < 0) {\n" << " PADDLE_THROW(platform::errors::Fatal (\"Add functions to " "core.ops failed!\"));\n" << " }\n\n" << " InitOpsAttrTypeMap();" << "}\n\n" << "} // namespace pybind\n" << "} // namespace paddle\n"; out.close(); #ifdef PADDLE_WITH_ASCEND_CL ge::GEFinalize(); #endif return 0; }