/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_cuda_utils.h" #include "paddle/fluid/operators/softmax_op.h" #include "paddle/fluid/platform/cudnn_helper.h" namespace paddle { namespace platform { struct CUDAPlace; struct float16; } // namespace platform } // namespace paddle namespace paddle { namespace operators { using ScopedTensorDescriptor = platform::ScopedTensorDescriptor; using DataLayout = platform::DataLayout; using Tensor = framework::Tensor; static inline int SizeOutAxis(const int axis, DDim dims) { int size = 1; for (int i = axis + 1; i < dims.size(); i++) { size *= dims[i]; } return size; } template union vec_t { static_assert(sizeof(T) == -1, "vec_t is only available by specialization."); }; template <> union vec_t { float4 s; float v[4]; }; template <> union vec_t { int2 s; platform::float16 v[4]; }; template __global__ void VecSoftmaxForward(T* dst, const T* src, const int batch_size, const int softmax_ele) { int offset = blockIdx.x * softmax_ele * WARP_PER_BLOCK; int idx = threadIdx.x * VPT; VECT buf = reinterpret_cast(&src[offset + idx])[0]; T* bufp = reinterpret_cast(&buf); float4 val4; float* val4p = reinterpret_cast(&val4); for (int i = 0; i < VPT; ++i) { val4p[i] = static_cast(bufp[i]); } float val = val4.x + val4.y + val4.z + val4.w; float max_val = math::warpReduceMax( max(max(val4.x, val4.y), max(val4.z, val4.w)), 0xffffffff); float4 tmp4 = make_float4(__expf(val4.x - max_val), __expf(val4.y - max_val), __expf(val4.z - max_val), __expf(val4.w - max_val)); float* tmp4p = reinterpret_cast(&tmp4); float invsum = 1.f / (math::warpReduceSum( tmp4.x + tmp4.y + tmp4.z + tmp4.w, 0xffffffff) + 1e-6f); for (int i = 0; i < VPT; ++i) { bufp[i] = static_cast(tmp4p[i] * invsum); } reinterpret_cast(&dst[offset + idx])[0] = buf; } template __global__ void VecSoftmaxBackward(T* dst, const T* grad, const T* src, const int batch_size, const int softmax_ele) { const int offset = blockIdx.x * softmax_ele * WARP_PER_BLOCK + threadIdx.x * VPT; float local_sum_gy = 0.f; vec_t local_grad; vec_t local_src; local_grad.s = reinterpret_cast(&grad[offset])[0]; local_src.s = reinterpret_cast(&src[offset])[0]; for (int i = 0; i < VPT; ++i) { local_sum_gy += static_cast(local_grad.v[i]) * static_cast(local_src.v[i]); } float sum_gy = math::warpReduceSum(local_sum_gy, 0xffffffff); vec_t local_dst; for (int i = 0; i < VPT; ++i) { local_dst.v[i] = static_cast(static_cast(local_src.v[i]) * (static_cast(local_grad.v[i]) - sum_gy)); } reinterpret_cast(&dst[offset])[0] = local_dst.s; } template class SoftmaxCUDNNKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* out = ctx.Output("Out"); out->mutable_data(ctx.GetPlace()); auto* out_data = out->data(); auto dims = x->dims(); const int rank = dims.size(); const int axis = CanonicalAxis(ctx.Attr("axis"), rank); const int dim = dims[axis]; const int N = SizeToAxis(axis, dims); const int D = SizeOutAxis(axis, dims); constexpr int warps_per_block = 4; if (D == 1 && dim == 128 && N % warps_per_block == 0 && sizeof(T) <= 4) { // a warp for a batch, 4 elements for a thread, only support the softmax // dim size = 128 currently if (sizeof(T) == 2) { VecSoftmaxForward< T, int2, 4, warps_per_block><<>>( out_data, x->data(), N, dim); } else if (sizeof(T) == 4) { VecSoftmaxForward< T, int4, 4, warps_per_block><<>>( out_data, x->data(), N, dim); } else { assert(false && "not support"); } } else { ScopedTensorDescriptor desc; std::vector tensor_dims = {N, dim, D, 1}; DataLayout layout = DataLayout::kNCHW; cudnnTensorDescriptor_t desc_ = desc.descriptor(layout, tensor_dims); auto& dev_ctx = ctx.template device_context(); auto handle = dev_ctx.cudnn_handle(); auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE : CUDNN_SOFTMAX_MODE_CHANNEL; PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxForward( handle, CUDNN_SOFTMAX_ACCURATE, mode, platform::CudnnDataType::kOne(), desc_, x->data(), platform::CudnnDataType::kZero(), desc_, out_data)); } } }; template class SoftmaxGradCUDNNKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); dx->mutable_data(ctx.GetPlace()); auto* dx_data = dx->data(); auto dims = out->dims(); const int rank = dims.size(); const int axis = CanonicalAxis(ctx.Attr("axis"), rank); const int dim = dims[axis]; const int N = SizeToAxis(axis, dims); const int D = SizeOutAxis(axis, dims); constexpr int warps_per_block = 4; constexpr bool warp_softmax_available = std::is_same::value || std::is_same::value; if (D == 1 && dim == 128 && N % warps_per_block == 0 && warp_softmax_available) { if (std::is_same::value) { VecSoftmaxBackward< float, 4, warps_per_block><<>>( dx->data(), dout->data(), out->data(), N, dim); } else if (std::is_same::value) { VecSoftmaxBackward< platform::float16, 4, warps_per_block><<>>( dx->data(), dout->data(), out->data(), N, dim); } else { PADDLE_ENFORCE_EQ( warp_softmax_available, true, platform::errors::Unimplemented( "Warp softmax backward is only available for fp32 and fp16")); } } else { ScopedTensorDescriptor desc; std::vector tensor_dims = {N, dim, D, 1}; DataLayout layout = DataLayout::kNCHW; cudnnTensorDescriptor_t desc_ = desc.descriptor(layout, tensor_dims); auto& dev_ctx = ctx.template device_context(); auto handle = dev_ctx.cudnn_handle(); auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE : CUDNN_SOFTMAX_MODE_CHANNEL; PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxBackward( handle, CUDNN_SOFTMAX_ACCURATE, mode, platform::CudnnDataType::kOne(), desc_, out->data(), desc_, dout->data(), platform::CudnnDataType::kZero(), desc_, dx_data)); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace, ops::SoftmaxCUDNNKernel, ops::SoftmaxCUDNNKernel, ops::SoftmaxCUDNNKernel); REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace, ops::SoftmaxGradCUDNNKernel, ops::SoftmaxGradCUDNNKernel, ops::SoftmaxGradCUDNNKernel);