# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define loss functions of neural network import numpy as np import paddle.fluid as fluid import paddle.fluid.core as core import paddle from .. import functional as F from paddle.fluid.framework import core, in_dygraph_mode, _varbase_creator __all__ = [ 'BCEWithLogitsLoss', 'CrossEntropyLoss', 'MSELoss', 'L1Loss', 'NLLLoss', 'BCELoss', 'KLDivLoss', 'MarginRankingLoss', 'CTCLoss', 'SmoothL1Loss', ] class BCEWithLogitsLoss(fluid.dygraph.Layer): """ This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer. Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits`` layer and some reduce operations. This measures the element-wise probability error in classification tasks in which each class is independent. This can be thought of as predicting labels for a data-point, where labels are not mutually exclusive. For example, a news article can be about politics, technology or sports at the same time or none of these. First this operator calculate loss function as follows: .. math:: Out = -Labels * \\log(\\sigma(Logit)) - (1 - Labels) * \\log(1 - \\sigma(Logit)) We know that :math:`\\sigma(Logit) = \\frac{1}{1 + \\e^{-Logit}}`. By substituting this we get: .. math:: Out = Logit - Logit * Labels + \\log(1 + \\e^{-Logit}) For stability and to prevent overflow of :math:`\\e^{-Logit}` when Logit < 0, we reformulate the loss as follows: .. math:: Out = \\max(Logit, 0) - Logit * Labels + \\log(1 + \\e^{-\|Logit\|}) Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the weight tensor on the loss `Out`. The ``weight`` tensor will attach different weight on every items in the batch. The ``pos_weight`` will attach different weight on the positive label of each class. Finally, this operator applies reduce operation on the loss. If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`. If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`. If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`. Note that the target labels ``label`` should be numbers between 0 and 1. Args: weight (Tensor, optional): A manual rescaling weight given to the loss of each batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`, The data type is float32, float64. Default is ``'None'``. reduction (str, optional): Indicate how to average the loss by batch_size, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; If :attr:`reduction` is ``'sum'``, the summed loss is returned. Default is ``'mean'``. pos_weight (Tensor, optional): A weight of positive examples. Must be a vector with length equal to the number of classes. The data type is float32, float64. Default is ``'None'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shapes: logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *], N is batch_size, `*` means number of additional dimensions. The ``logit`` is usually the output of Linear layer. Available dtype is float32, float64. label (Tensor): The target labels tensor. 2-D tensor with the same shape as ``logit``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64. output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``logit`` , else the shape of output is scalar. Returns: A callable object of BCEWithLogitsLoss. Examples: .. code-block:: python import paddle paddle.disable_static() logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32") label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32") bce_logit_loss = paddle.nn.BCEWithLogitsLoss() output = bce_logit_loss(logit, label) print(output.numpy()) # [0.45618808] """ def __init__(self, weight=None, reduction='mean', pos_weight=None, name=None): if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but " "received %s, which is not allowed." % reduction) super(BCEWithLogitsLoss, self).__init__() self.weight = weight self.reduction = reduction self.pos_weight = pos_weight self.name = name def forward(self, logit, label): out = paddle.nn.functional.binary_cross_entropy_with_logits( logit, label, self.weight, self.reduction, self.pos_weight, self.name) return out class CrossEntropyLoss(fluid.dygraph.Layer): """ :alias_main: paddle.nn.CrossEntropyLoss :alias: paddle.nn.CrossEntropyLoss,paddle.nn.layer.CrossEntropyLoss,paddle.nn.layer.loss.CrossEntropyLoss This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``, and ``NLLLoss`` together. It is useful when training a classification problem with ``C`` classes. If provided, the optional argument ``weight`` should be a 1D Variable assigning weight to each of the classes. For predictions label, and target label, the loss is calculated as follows. .. math:: loss_j = -\\text{input[class]} + \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K If weight is not ``None``: .. math:: loss_j = \\text{weight[class]}(-\\text{input[class]} + \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K Parameters: input (Variable): Input tensor, the data type is float32, float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1. label (Variable): Label tensor, the data type is int64. Shape is (N), where each value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is (N, D1, D2,..., Dk), k >= 1. weight (Variable, optional): Weight tensor, a manual rescaling weight given to each class and the shape is (C). It has the same dimensions as class number and the data type is float32, float64. Default is ``'None'``. reduction (str, optional): Indicate how to average the loss by batch_size, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. If :attr:`reduction` is ``'none'``, the unreduced loss is returned. Default is ``'mean'``. ignore_index (int64, optional): Specifies a target value that is ignored and does not contribute to the input gradient. Default is ``-100``. Returns: The tensor variable storing the cross_entropy_loss of input and label. Return type: Variable. Examples: .. code-block:: python # declarative mode import paddle import paddle.fluid as fluid import numpy as np input = fluid.data(name='input', shape=[5, 100], dtype='float64') label = fluid.data(name='label', shape=[5], dtype='int64') weight = fluid.data(name='weight', shape=[100], dtype='float64') ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean') output = ce_loss(input, label) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.random([5, 100]).astype("float64") label_data = np.random.randint(0, 100, size=(5)).astype(np.int64) weight_data = np.random.random([100]).astype("float64") output = exe.run(fluid.default_main_program(), feed={"input": input_data, "label": label_data,"weight": weight_data}, fetch_list=[output], return_numpy=True) print(output) # imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) label = dg.to_variable(label_data) weight = dg.to_variable(weight_data) ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean') output = ce_loss(input, label) print(output.numpy()) """ def __init__(self, weight=None, ignore_index=-100, reduction='mean'): super(CrossEntropyLoss, self).__init__() self.weight = weight self.reduction = reduction self.ignore_index = ignore_index def forward(self, input, label): fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'cross_entropy_loss') fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'], 'cross_entropy_loss') if self.reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or" " 'none', but received %s, which is not allowed." % self.reduction) return paddle.nn.functional.cross_entropy( input, label, weight=self.weight, ignore_index=self.ignore_index, reduction=self.reduction) class MSELoss(fluid.dygraph.layers.Layer): """ **Mean Square Error Loss** Computes the mean square error (squared L2 norm) of given input and label. If :attr:`reduction` is set to ``'none'``, loss is calculated as: .. math:: Out = (input - label)^2 If :attr:`reduction` is set to ``'mean'``, loss is calculated as: .. math:: Out = \operatorname{mean}((input - label)^2) If :attr:`reduction` is set to ``'sum'``, loss is calculated as: .. math:: Out = \operatorname{sum}((input - label)^2) where `input` and `label` are `float32` tensors of same shape. Parameters: reduction (string, optional): The reduction method for the output, could be 'none' | 'mean' | 'sum'. If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. If :attr:`reduction` is ``'none'``, the unreduced loss is returned. Default is ``'mean'``. Shape: input (Tensor): Input tensor, the data type is float32 or float64 label (Tensor): Label tensor, the data type is float32 or float64 output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input. Examples: .. code-block:: python import numpy as np import paddle input_data = np.array([1.5]).astype("float32") label_data = np.array([1.7]).astype("float32") paddle.disable_static() mse_loss = paddle.nn.loss.MSELoss() input = paddle.to_tensor(input_data) label = paddle.to_tensor(label_data) output = mse_loss(input, label) print(output.numpy()) # [0.04000002] """ def __init__(self, reduction='mean'): super(MSELoss, self).__init__() if reduction not in ['sum', 'mean', 'none']: raise ValueError( "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', " "but received {}.".format(reduction)) self.reduction = reduction def forward(self, input, label): if not fluid.framework.in_dygraph_mode(): fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'MSELoss') fluid.data_feeder.check_variable_and_dtype( label, 'label', ['float32', 'float64'], 'MSELoss') square_out = fluid.layers.square( fluid.layers.elementwise_sub(input, label)) if self.reduction == 'none': return square_out reduce_op = 'reduce_mean' if self.reduction == 'sum': reduce_op = 'reduce_sum' return getattr(fluid.layers, reduce_op)(square_out) class L1Loss(fluid.dygraph.Layer): """ This interface is used to construct a callable object of the ``L1Loss`` class. The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows. If `reduction` set to ``'none'``, the loss is: .. math:: Out = \lvert input - label\rvert If `reduction` set to ``'mean'``, the loss is: .. math:: Out = MEAN(\lvert input - label\rvert) If `reduction` set to ``'sum'``, the loss is: .. math:: Out = SUM(\lvert input - label\rvert) Parameters: reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If `reduction` is ``'none'``, the unreduced loss is returned; If `reduction` is ``'mean'``, the reduced mean loss is returned. If `reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shape: input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64. label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64. output (Tensor): The L1 Loss of ``input`` and ``label``. If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` . If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1]. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32") label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32") input = paddle.to_variable(input_data) label = paddle.to_variable(label_data) l1_loss = paddle.nn.loss.L1Loss() output = l1_loss(input, label) print(output.numpy()) # [0.35] l1_loss = paddle.nn.loss.L1Loss(reduction='sum') output = l1_loss(input, label) print(output.numpy()) # [1.4] l1_loss = paddle.nn.loss.L1Loss(reduction='none') output = l1_loss(input, label) print(output.numpy()) # [[0.20000005 0.19999999] # [0.2 0.79999995]] """ def __init__(self, reduction='mean', name=None): if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but " "received %s, which is not allowed." % reduction) super(L1Loss, self).__init__() self.reduction = reduction self.name = name def forward(self, input, label): return paddle.nn.functional.l1_loss( input, label, self.reduction, name=self.name) class BCELoss(fluid.dygraph.Layer): """ This interface is used to construct a callable object of the ``BCELoss`` class. The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input`` and target labels ``label`` . The binary_cross_entropy loss can be described as: If :attr:`weight` is set, the loss is: .. math:: Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input)) If :attr:`weight` is None, the loss is: .. math:: Out = -1 * (label * log(input) + (1 - label) * log(1 - input)) If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`. If :attr:`reduction` set to ``'mean'``, the reduced mean loss is: .. math:: Out = MEAN(Out) If :attr:`reduction` set to ``'sum'``, the reduced sum loss is: .. math:: Out = SUM(Out) Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label`` should be numbers between 0 and 1. Parameters: weight (Tensor, optional): A manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size nbatch and the data type is float32, float64. Default is ``'None'``. reduction (str, optional): Indicate how to average the loss by batch_size, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; If :attr:`reduction` is ``'sum'``, the summed loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shape: input (Tensor): 2-D tensor with shape: (N, *), N is batch_size, `*` means number of additional dimensions. The input ``input`` should always be the output of sigmod. Available dtype is float32, float64. label (Tensor): 2-D tensor with the same shape as ``input``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64. output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is scalar. Returns: A callable object of BCELoss. Examples: .. code-block:: python import numpy as np import paddle input_data = np.array([0.5, 0.6, 0.7]).astype("float32") label_data = np.array([1.0, 0.0, 1.0]).astype("float32") paddle.disable_static() input = paddle.to_variable(input_data) label = paddle.to_variable(label_data) bce_loss = paddle.nn.loss.BCELoss() output = bce_loss(input, label) print(output.numpy()) # [0.65537095] paddle.enable_static() """ def __init__(self, weight=None, reduction='mean', name=None): if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but " "received %s, which is not allowed." % reduction) super(BCELoss, self).__init__() self.weight = weight self.reduction = reduction self.name = name def forward(self, input, label): out = paddle.nn.functional.binary_cross_entropy( input, label, self.weight, self.reduction, self.name) return out class NLLLoss(fluid.dygraph.Layer): """ :alias_main: paddle.nn.NLLLoss :alias: paddle.nn.NLLLoss,paddle.nn.layer.NLLLoss,paddle.nn.layer.loss.NLLLoss This class accepts input and target label and returns negative log likelihood cross error. It is useful to train a classification problem with C classes. The input for the loss is epected to contain log-probabilities of each classes. It has to be a Tensor of size either (batch_size, C) or (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case. The label for the loss should be a class index in the range [0, C-1] where C is the number of classes. If ignore_index is specified, the specified target value does not contribute to the input gradient. If the optional argument `weight` is provided, it should be a 1D Tensor assigning weight to each of the classed. This is particularly useful when you have an unbalanced training set. The loss is calculated as follows. The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as: .. math:: \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad l_n = - w_{y_n} x_{n,y_n}, \quad w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\}, where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'`` (default ``'mean'``), then .. math:: \ell(x, y) = \\begin{cases} \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, & \\text{if reduction} = \\text{'mean';}\\\\ \\sum_{n=1}^N l_n, & \\text{if reduction} = \\text{'sum'.} \\end{cases} Parameters: weight (Tensor, optional): Weight tensor, a manual rescaling weight given to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise, it treated as if having all ones. the data type is float32, float64, Default is ``'None'``. ignore_index (int64, optional): Specifies a target value that is ignored and does not contribute to the input gradient. reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If `reduction` is ``'mean'``, the reduced mean loss is returned; if `reduction` is ``'sum'``, the reduced sum loss is returned; if `reduction` is ``'none'``, no reduction will be apllied. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shape: input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes. But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`. The data type is float32, float64. label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`. The data type is int64. output (Tensor): the `negative log likelihood loss` between input `x` and `label`. If `reduction` is `'none'`, the shape is `[N, *]`. If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`. Examples: .. code-block:: python import paddle import numpy as np nll_loss = paddle.nn.layer.NLLLoss() log_softmax = paddle.nn.LogSoftmax(axis=1) input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ], [0.53331435, 0.07999352, 0.8549948 ], [0.25879037, 0.39530203, 0.698465 ], [0.73427284, 0.63575995, 0.18827209], [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32) label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64) place = paddle.CPUPlace() paddle.disable_static(place) input = paddle.to_variable(input_np) log_out = log_softmax(input) label = paddle.to_variable(label_np) result = nll_loss(log_out, label) print(result.numpy()) # [1.0720209] """ def __init__(self, weight=None, ignore_index=-100, reduction='mean', name=None): if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in nll_loss should be 'sum', 'mean' or " "'none', but received %s, which is not allowed." % reduction) super(NLLLoss, self).__init__() self._weight = weight self._ignore_index = ignore_index self._reduction = reduction self._name = name def forward(self, input, label): return F.nll_loss( input, label, weight=self._weight, ignore_index=self._ignore_index, reduction=self._reduction, name=self._name) class KLDivLoss(fluid.dygraph.Layer): """ This interface calculates the Kullback-Leibler divergence loss between Input(X) and Input(Target). Notes that Input(X) is the log-probability and Input(Target) is the probability. KL divergence loss is calculated as follows: $$l(x, y) = y * (\log(y) - x)$$ Parameters: reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; Default is ``'mean'``. Shape: - input: (N, *) where * means, any number of additional dimensions. - label: (N, *), same shape as input - output: tensor with shape: (1) by default. Examples: .. code-block:: python import paddle import numpy as np import paddle.nn as nn paddle.enable_imperative() shape = (5, 20) x = np.random.uniform(-10, 10, shape).astype('float32') target = np.random.uniform(-10, 10, shape).astype('float32') # 'batchmean' reduction, loss shape will be [N] kldiv_criterion = nn.KLDivLoss(reduction='batchmean') pred_loss = kldiv_criterion(paddle.to_variable(x), paddle.to_variable(target)) # shape=[5] # 'mean' reduction, loss shape will be [1] kldiv_criterion = nn.KLDivLoss(reduction='mean') pred_loss = kldiv_criterion(paddle.to_variable(x), paddle.to_variable(target)) # shape=[1] # 'sum' reduction, loss shape will be [1] kldiv_criterion = nn.KLDivLoss(reduction='sum') pred_loss = kldiv_criterion(paddle.to_variable(x), paddle.to_variable(target)) # shape=[1] # 'none' reduction, loss shape is same with X shape kldiv_criterion = nn.KLDivLoss(reduction='none') pred_loss = kldiv_criterion(paddle.to_variable(x), paddle.to_variable(target)) # shape=[5, 20] """ def __init__(self, reduction='mean'): super(KLDivLoss, self).__init__() self.reduction = reduction def forward(self, input, label): out = paddle.nn.functional.kl_div(input, label, self.reduction) return out class MarginRankingLoss(fluid.dygraph.Layer): """ This interface is used to construct a callable object of the ``MarginRankingLoss`` class. The MarginRankingLoss layer calculates the margin rank loss between the input, other and label , use the math function as follows. .. math:: margin\_rank\_loss = max(0, -label * (input - other) + margin) If :attr:`reduction` set to ``'mean'``, the reduced mean loss is: .. math:: Out = MEAN(margin\_rank\_loss) If :attr:`reduction` set to ``'sum'``, the reduced sum loss is: .. math:: Out = SUM(margin\_rank\_loss) If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``. Parameters: margin (float, optional): The margin value to add, default value is 0; reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shape: input: N-D Tensor, the shape is [N, *], N is batch size and `*` means any number of additional dimensions., available dtype is float32, float64. other: N-D Tensor, `other` have the same shape and dtype as `input`. label: N-D Tensor, label have the same shape and dtype as `input`. output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor. Returns: A callable object of MarginRankingLoss. Examples: .. code-block:: python import numpy as np import paddle paddle.disable_static() input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype("float32")) other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype("float32")) label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype("float32")) margin_rank_loss = paddle.nn.MarginRankingLoss() loss = margin_rank_loss(input, other, label) print(loss.numpy()) # [0.75] """ def __init__(self, margin=0.0, reduction='mean', name=None): if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but " "received %s, which is not allowed." % reduction) super(MarginRankingLoss, self).__init__() self.margin = margin self.reduction = reduction self.name = name def forward(self, input, other, label): out = paddle.nn.functional.margin_ranking_loss( input, other, label, self.margin, self.reduction, self.name) return out class CTCLoss(fluid.dygraph.Layer): """ :alias_main: paddle.nn.CTCLoss :alias: paddle.nn.CTCLoss, paddle.nn.layer.CTCLoss, paddle.nn.layer.loss.CTCLoss An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc) to compute Connectionist Temporal Classification (CTC) loss. It can be aliased as softmax with CTC, since a native softmax activation is interated to the Warp-CTC library to normalize values for each row of the input tensor. Parameters: blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0. reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``. Shape: log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type must be float32. labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32. input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64. label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64. Returns: Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``. Examples: .. code-block:: python # declarative mode import numpy as np import paddle # length of the longest logit sequence max_seq_length = 4 #length of the longest label sequence max_label_length = 3 # number of logit sequences batch_size = 2 # class num class_num = 3 np.random.seed(1) log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04], [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]], [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01], [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]], [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02], [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]], [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01], [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]], [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02], [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32") labels = np.array([[1, 2, 2], [1, 2, 2]]).astype("int32") input_lengths = np.array([5, 5]).astype("int64") label_lengths = np.array([3, 3]).astype("int64") paddle.disable_static() log_probs = paddle.to_tensor(log_probs) labels = paddle.to_tensor(labels) input_lengths = paddle.to_tensor(input_lengths) label_lengths = paddle.to_tensor(label_lengths) loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels, input_lengths, label_lengths) print(loss.numpy()) #[3.9179852 2.9076521] loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels, input_lengths, label_lengths) print(loss.numpy()) #[1.1376063] """ def __init__(self, blank=0, reduction='mean'): super(CTCLoss, self).__init__() self.blank = blank self.reduction = reduction def forward(self, log_probs, labels, input_lengths, label_lengths): return paddle.nn.functional.ctc_loss(log_probs, labels, input_lengths, label_lengths, self.blank, self.reduction) class SmoothL1Loss(fluid.dygraph.Layer): """ This operator calculates smooth_l1_loss. Creates a criterion that uses a squared term if the absolute element-wise error falls below 1 and an L1 term otherwise. In some cases it can prevent exploding gradients and it is more robust and less sensitivity to outliers. Also known as the Huber loss: .. math:: loss(x,y)=\\frac{1}{n}\\sum_{i}z_i where z_i is given by: .. math:: \\mathop{z_i}=\\left\\{\\begin{array}{rcl} 0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\ delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise} \\end{array} \\right. Parameters: reduction (str, optional): Indicate how to average the loss by batch_size, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. If :attr:`reduction` is ``'none'``, the unreduced loss is returned. Default is ``'mean'``. delta (float, optional): Specifies the hyperparameter delta to be used. The value determines how large the errors need to be to use L1. Errors smaller than delta are minimized with L2. Parameter is ignored for negative/zero values. Default = 1.0 name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Call Parameters: input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1. label (Tensor): Label tensor, the data type is float32 or float64. The shape of label is the same as the shape of input. Returns: The tensor variable storing the smooth_l1_loss of input and label. Return type: Tensor. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() input_data = np.random.rand(3,3).astype("float32") label_data = np.random.rand(3,3).astype("float32") input = paddle.to_tensor(input_data) label = paddle.to_tensor(label_data) loss = paddle.nn.SmoothL1Loss() output = loss(input, label) print(output.numpy()) """ def __init__(self, reduction='mean', delta=1.0, name=None): super(SmoothL1Loss, self).__init__() self.reduction = reduction self.delta = delta self.name = name def forward(self, input, label): return F.smooth_l1_loss( input, label, reduction=self.reduction, delta=self.delta, name=self.name)