// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/amp_auto_cast.h" #include #include #include "paddle/fluid/eager/eager_tensor.h" #include "paddle/fluid/imperative/tracer.h" #include "paddle/fluid/imperative/type_defs.h" #include "paddle/fluid/imperative/var_helper.h" namespace paddle { namespace imperative { class VarBase; // According to the input `place` and `dtype`, this function returns a tuple // consists of three sets: // 1) All operators registered in the Paddle framework. // 2) All operators supported for `place` and `dtype`. // 3) All operators unsupported for `place` and `dtype`. // The input `place` is a type of string, which can only be `GPU` or `CPU`. // The input `dtype` is a type of paddle::framework::proto::VarType::Type, // which can be paddle::framework::proto::VarType::FP16, // paddle::framework::proto::VarType::FP32 and so on. std::tuple, std::unordered_set, std::unordered_set> OpSupportedInfos(const std::string& place, framework::proto::VarType::Type dtype) { std::string query_place; std::transform(place.begin(), place.end(), std::back_inserter(query_place), [](unsigned char c) { return std::toupper(c); }); using fn_type = std::add_pointer::type; std::unordered_map is_target_place{ {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place}, {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place}, {"MLU", &platform::is_mlu_place}, }; PADDLE_ENFORCE_NE(is_target_place.count(query_place), 0, platform::errors::InvalidArgument( "The argument `place` should be 'GPU', 'CPU', 'XPU', " "'NPU', 'MLU', but got '%s'.", place)); std::unordered_set all_ops; const auto& op_info = framework::OpInfoMap::Instance().map(); for (auto it = op_info.begin(); it != op_info.end(); it++) { all_ops.emplace(it->first); } std::unordered_set supported_ops; auto& all_kernels = framework::OperatorWithKernel::AllOpKernels(); for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) { for (auto& kernel_type : it->second) { if (is_target_place[query_place](kernel_type.first.place_) && kernel_type.first.data_type_ == dtype) { supported_ops.emplace(it->first); } } } auto phi_kernels = phi::KernelFactory::Instance().kernels(); for (auto& kernel_pair : phi_kernels) { auto op_type = phi::TransToFluidOpName(kernel_pair.first); for (auto& info_pair : kernel_pair.second) { framework::OpKernelType kernel_type = framework::TransPhiKernelKeyToOpKernelType(info_pair.first); if (is_target_place[query_place](kernel_type.place_) && kernel_type.data_type_ == dtype && all_ops.count(op_type)) { VLOG(4) << op_type << " " << supported_ops.size(); supported_ops.emplace(op_type); } } } std::unordered_set unsupported_ops; for (auto& op : all_ops) { if (!supported_ops.count(op)) { unsupported_ops.emplace(op); } } VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --"; VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --"; VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size() << " --"; return std::make_tuple(std::move(all_ops), std::move(supported_ops), std::move(unsupported_ops)); } AutoCastGuard::AutoCastGuard(std::shared_ptr tracer, AmpLevel level) : tracer_(tracer) { pre_amp_level_ = tracer_->GetAmpLevel(); if (pre_amp_level_ != level) { tracer_->SetAmpLevel(level); } } AutoCastGuard::~AutoCastGuard() { tracer_->SetAmpLevel(pre_amp_level_); } AmpOperators::AmpOperators() : allow_ops_(new std::unordered_set()), block_ops_(new std::unordered_set()), unsupported_fp16_ops_(new std::unordered_set()), unsupported_bf16_ops_(new std::unordered_set()) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) auto unsupported_ops_gpu_fp16 = std::get<2>( OpSupportedInfos("GPU", paddle::framework::proto::VarType::FP16)); unsupported_fp16_ops_->insert(unsupported_ops_gpu_fp16.begin(), unsupported_ops_gpu_fp16.end()); auto unsupported_ops_gpu_bf16 = std::get<2>( OpSupportedInfos("GPU", paddle::framework::proto::VarType::BF16)); unsupported_bf16_ops_->insert(unsupported_ops_gpu_bf16.begin(), unsupported_ops_gpu_bf16.end()); // NOTE: GPU/NPU/XPU/MLU is compiled seperatly. #elif defined(PADDLE_WITH_ASCEND_CL) auto unsupported_ops_npu_fp16 = std::get<2>( OpSupportedInfos("NPU", paddle::framework::proto::VarType::FP16)); unsupported_fp16_ops_->insert(unsupported_ops_npu_fp16.begin(), unsupported_ops_npu_fp16.end()); auto unsupported_ops_npu_bf16 = std::get<2>( OpSupportedInfos("NPU", paddle::framework::proto::VarType::BF16)); unsupported_bf16_ops_->insert(unsupported_ops_npu_bf16.begin(), unsupported_ops_npu_bf16.end()); #elif defined(PADDLE_WITH_XPU) auto unsupported_ops_xpu_fp16 = std::get<2>( OpSupportedInfos("XPU", paddle::framework::proto::VarType::FP16)); unsupported_fp16_ops_->insert(unsupported_ops_xpu_fp16.begin(), unsupported_ops_xpu_fp16.end()); auto unsupported_ops_xpu_bf16 = std::get<2>( OpSupportedInfos("XPU", paddle::framework::proto::VarType::BF16)); unsupported_bf16_ops_->insert(unsupported_ops_xpu_bf16.begin(), unsupported_ops_xpu_bf16.end()); #elif defined(PADDLE_WITH_MLU) auto unsupported_ops_mlu_fp16 = std::get<2>( OpSupportedInfos("MLU", paddle::framework::proto::VarType::FP16)); unsupported_fp16_ops_->insert(unsupported_ops_mlu_fp16.begin(), unsupported_ops_mlu_fp16.end()); auto unsupported_ops_mlu_bf16 = std::get<2>( OpSupportedInfos("MLU", paddle::framework::proto::VarType::BF16)); unsupported_bf16_ops_->insert(unsupported_ops_mlu_bf16.begin(), unsupported_ops_mlu_bf16.end()); #endif VLOG(4) << allow_ops_->size() << " " << block_ops_->size() << " " << unsupported_fp16_ops_->size() << " " << unsupported_bf16_ops_->size(); } AmpOperators::~AmpOperators() {} AmpOperators& AmpOperators::Instance() { static AmpOperators instance; return instance; } std::shared_ptr> AmpOperators::GetMutableAllowOps() { return allow_ops_; } std::shared_ptr> AmpOperators::GetMutableBlockOps() { return block_ops_; } std::shared_ptr> AmpOperators::GetMutableUnsupportedFp16Ops() { return unsupported_fp16_ops_; } std::shared_ptr> AmpOperators::GetMutableUnsupportedBf16Ops() { return unsupported_bf16_ops_; } std::ostream& operator<<(std::ostream& os, AmpOperators& ops) { os << "allow ops: "; auto allow_ops = ops.GetMutableAllowOps(); std::copy((*allow_ops).begin(), (*allow_ops).end(), std::ostream_iterator(os, " ")); os << "\n"; os << "block ops: "; auto block_ops = ops.GetMutableBlockOps(); std::copy((*block_ops).begin(), (*block_ops).end(), std::ostream_iterator(os, " ")); os << "\n"; os << "unsupported fp16 ops: "; auto unsupported_fp16_ops = ops.GetMutableUnsupportedFp16Ops(); std::copy((*unsupported_fp16_ops).begin(), (*unsupported_fp16_ops).end(), std::ostream_iterator(os, " ")); os << "\n"; os << "unsupported bf16 ops: "; auto unsupported_bf16_ops = ops.GetMutableUnsupportedBf16Ops(); std::copy((*unsupported_bf16_ops).begin(), (*unsupported_bf16_ops).end(), std::ostream_iterator(os, " ")); return os; } template inline std::string GetDtypeStr(const std::shared_ptr& var) { return framework::DataTypeToString(GetDataType(var)); } template inline bool NeedCast(const std::shared_ptr& var) { auto place = GetPlace(var); auto data_type = GetDataType(var); if (paddle::platform::is_gpu_place(place) || paddle::platform::is_cuda_pinned_place(place) || paddle::platform::is_xpu_place(place) || paddle::platform::is_mlu_place(place) || paddle::platform::is_custom_place(place) || paddle::platform::is_npu_place(place) || paddle::platform::is_npu_pinned_place(place)) { // CudaPinndePlace is added for varbase created by dataloader if (data_type == paddle::framework::proto::VarType::FP32 || data_type == paddle::framework::proto::VarType::FP16 || data_type == paddle::framework::proto::VarType::BF16) { return true; } } return false; } // NOTE: Trace a cast op, so if a var is casted from fp32 to fp16, then the grad // var will be cast back from fp16 to fp32 during backward phase. template static inline std::shared_ptr CastToType( const std::shared_ptr& var, const framework::proto::VarType::Type dst_type) { const auto& tracer = imperative::GetCurrentTracer(); imperative::NameVarMap ins = {{"X", {var}}}; framework::AttributeMap attrs = {{"in_dtype", GetDataType(var)}, {"out_dtype", dst_type}}; auto out = std::shared_ptr(new VarType(tracer->GenerateUniqueName())); imperative::NameVarMap outs = {{"Out", {out}}}; { AutoCastGuard guard(tracer, AmpLevel::O0); tracer->TraceOp("cast", ins, outs, std::move(attrs)); } return out; } template static inline std::shared_ptr CastToFP16( const std::shared_ptr& var) { auto dst_type = framework::proto::VarType::FP16; if (NeedCast(var) && (GetDataType(var) != dst_type)) { return CastToType(var, dst_type); } return var; } template static inline std::shared_ptr CastToFP32( const std::shared_ptr& var) { auto dst_type = framework::proto::VarType::FP32; if (NeedCast(var) && (GetDataType(var) != dst_type)) { return CastToType(var, dst_type); } return var; } template static inline std::shared_ptr CastToBF16( const std::shared_ptr& var) { auto dst_type = framework::proto::VarType::BF16; if (NeedCast(var) && (GetDataType(var) != dst_type)) { return CastToType(var, dst_type); } return var; } template static inline framework::proto::VarType::Type GetPromoteType( const std::string& op_type, const NameVarMap& ins, const framework::proto::VarType::Type amp_dtype) { auto dst_type = amp_dtype; for (const auto& pair : ins) { for (const auto& var : pair.second) { if (GetDataType(var) == framework::proto::VarType::FP32) { dst_type = GetDataType(var); break; } } } // NOTE(juncai): moving_average_abs_max_scale only consider the // dtype of input(X) if (op_type == "moving_average_abs_max_scale") { for (const auto& pair : ins) { if (pair.first == "X" && GetDataType(pair.second.front()) == framework::proto::VarType::FP16) { dst_type = framework::proto::VarType::FP16; } } } return dst_type; } template NameVarMap AutoCastInputs(const std::string& op_type, const NameVarMap& ins) { NameVarMap new_ins(ins); if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) { for (auto& pair : new_ins) { // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16. if ((op_type == "batch_norm" || op_type == "layer_norm" || op_type == "sync_batch_norm") && pair.first != "X") { continue; } if ((op_type == "fused_attention" || op_type == "fused_feedforward")) { if (pair.first == "LnScale" || pair.first == "LnBias" || pair.first == "Ln2Scale" || pair.first == "Ln2Bias" || pair.first == "Ln1Scale" || pair.first == "Ln1Bias") { continue; } } VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from " << GetDtypeStr(*pair.second.cbegin()) << " to float16"; for (auto& var : pair.second) { var = CastToFP16(var); } } return new_ins; } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) { for (auto& pair : new_ins) { VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from " << GetDtypeStr(*pair.second.cbegin()) << " to float"; for (auto& var : pair.second) { var = CastToFP32(var); } } return new_ins; } else { auto dst_type = GetPromoteType(op_type, ins, framework::proto::VarType::FP16); // NOTE(zhiqiu): if the op has op fp16 kernel, fall back to fp32. if (dst_type == framework::proto::VarType::FP16 && AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count( op_type)) { dst_type = framework::proto::VarType::FP32; } for (auto& pair : new_ins) { // NOTE(zhiqiu): batch_norm and layer_norm support only input x is fp16. if ((op_type == "batch_norm" || op_type == "layer_norm" || op_type == "sync_batch_norm") && pair.first == "X" && dst_type == framework::proto::VarType::FP32) { continue; } if ((op_type == "fused_attention" || op_type == "fused_feedforwad") && dst_type == framework::proto::VarType::FP32) { if (pair.first != "LnScale" && pair.first != "LnBias" && pair.first != "Ln2Scale" && pair.first != "Ln2Bias" && pair.first != "Ln1Scale" && pair.first != "Ln1Bias") { continue; } } VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from " << GetDtypeStr(*pair.second.cbegin()) << " to " << framework::DataTypeToString(dst_type); for (auto& var : pair.second) { var = (dst_type == framework::proto::VarType::FP32 ? CastToFP32(var) : CastToFP16(var)); } } return new_ins; } return new_ins; } template NameVarMap AutoCastInputs( const std::string& op_type, const NameVarMap& ins); template NameVarMap AutoCastInputs( const std::string& op_type, const NameVarMap& ins); template NameVarMap CastPureFp16Inputs(const std::string& op_type, const NameVarMap& ins) { NameVarMap new_ins(ins); auto dst_type = framework::proto::VarType::FP16; if (AmpOperators::Instance().GetMutableUnsupportedFp16Ops()->count(op_type) || AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) { dst_type = framework::proto::VarType::FP32; } for (auto& pair : new_ins) { // NOTE: The run_program OP only has FP32 kernel. In dy2stat pure fp16 // training, we have correctly cast the inputs of run_program OP before, // so here should avoid casting for run_program OP. if (op_type == "run_program") { continue; } if ((op_type == "batch_norm" || op_type == "layer_norm" || op_type == "sync_batch_norm") && pair.first != "X") { continue; } if ((op_type == "fused_attention" || op_type == "fused_feedforward")) { if (pair.first == "LnScale" || pair.first == "LnBias" || pair.first == "Ln2Scale" || pair.first == "Ln2Bias" || pair.first == "Ln1Scale" || pair.first == "Ln1Bias") { continue; } } VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from " << GetDtypeStr(*pair.second.cbegin()) << " to " << framework::DataTypeToString(dst_type); for (auto& var : pair.second) { var = (dst_type == framework::proto::VarType::FP32 ? CastToFP32(var) : CastToFP16(var)); } } return new_ins; } template NameVarMap CastPureFp16Inputs( const std::string& op_type, const NameVarMap& ins); template NameVarMap CastPureFp16Inputs( const std::string& op_type, const NameVarMap& ins); template NameVarMap AutoCastBF16Inputs(const std::string& op_type, const NameVarMap& ins) { NameVarMap new_ins(ins); if (AmpOperators::Instance().GetMutableAllowOps()->count(op_type)) { for (auto& pair : new_ins) { VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from " << GetDtypeStr(*pair.second.cbegin()) << " to bfloat16"; for (auto& var : pair.second) { var = CastToBF16(var); } } return new_ins; } else if (AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) { for (auto& pair : new_ins) { VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from " << GetDtypeStr(*pair.second.cbegin()) << " to float"; for (auto& var : pair.second) { var = CastToFP32(var); } } return new_ins; } else { auto dst_type = GetPromoteType(op_type, ins, framework::proto::VarType::BF16); // NOTE(zhangbo): if the op has op fp16 kernel, fall back to fp32. if (dst_type == framework::proto::VarType::BF16 && AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count( op_type)) { dst_type = framework::proto::VarType::FP32; } for (auto& pair : new_ins) { VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from " << GetDtypeStr(*pair.second.cbegin()) << " to " << framework::DataTypeToString(dst_type); for (auto& var : pair.second) { var = (dst_type == framework::proto::VarType::FP32 ? CastToFP32(var) : CastToBF16(var)); } } return new_ins; } return new_ins; } template NameVarMap AutoCastBF16Inputs( const std::string& op_type, const NameVarMap& ins); template NameVarMap AutoCastBF16Inputs( const std::string& op_type, const NameVarMap& ins); template NameVarMap CastPureBf16Inputs(const std::string& op_type, const NameVarMap& ins) { NameVarMap new_ins(ins); auto dst_type = framework::proto::VarType::BF16; if (AmpOperators::Instance().GetMutableUnsupportedBf16Ops()->count(op_type) || AmpOperators::Instance().GetMutableBlockOps()->count(op_type)) { dst_type = framework::proto::VarType::FP32; } for (auto& pair : new_ins) { VLOG(5) << "Op(" << op_type << "): Cast " << pair.first << " from " << GetDtypeStr(*pair.second.cbegin()) << " to " << framework::DataTypeToString(dst_type); for (auto& var : pair.second) { var = (dst_type == framework::proto::VarType::FP32 ? CastToFP32(var) : CastToBF16(var)); } } return new_ins; } template NameVarMap CastPureBf16Inputs( const std::string& op_type, const NameVarMap& ins); template NameVarMap CastPureBf16Inputs( const std::string& op_type, const NameVarMap& ins); } // namespace imperative } // namespace paddle