# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from .. import core from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator from ..layers.layer_function_generator import OpProtoHolder from ..layers import common_methods from . import to_variable, no_grad import numpy as np import six _supported_int_dtype_ = [ core.VarDesc.VarType.UINT8, core.VarDesc.VarType.INT8, core.VarDesc.VarType.INT16, core.VarDesc.VarType.INT32, core.VarDesc.VarType.INT64, ] _already_patch_varbase = False def monkey_patch_math_varbase(): """ Similar to monkey_patch_variable. The difference is, in dygraph mode, use auto-generated op functions for better performance. """ @no_grad def create_tensor(value, dtype, shape): out = _varbase_creator(dtype=dtype) out = core.ops.fill_constant(out, 'dtype', dtype, 'shape', shape, 'value', value, 'force_cpu', False) out.stop_gradient = True return out def create_scalar(value, dtype): return create_tensor(value, dtype, shape=[1]) def astype(self, dtype): """ **Notes**: **The variable must be a** :ref:`api_fluid_Tensor` Cast a variable to a specified data type. Args: self(Variable): The source variable dtype: The target data type Returns: Variable: Variable with new dtype Examples: In Static Graph Mode: .. code-block:: python import paddle.fluid as fluid startup_prog = fluid.Program() main_prog = fluid.Program() with fluid.program_guard(startup_prog, main_prog): original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32') new_variable = original_variable.astype('int64') print("new var's dtype is: {}".format(new_variable.dtype)) In Dygraph Mode: .. code-block:: python import paddle.fluid as fluid import numpy as np x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): original_variable = fluid.dygraph.to_variable(x) print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype)) new_variable = original_variable.astype('int64') print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype)) """ if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) return core.ops.cast(self, 'in_dtype', self.dtype, 'out_dtype', dtype) def _scalar_elementwise_op_(var, scale, bias): return core.ops.scale(var, 'scale', scale, 'bias', bias) def _neg_(var): return _scalar_elementwise_op_(var, -1.0, 0.0) def _float_(var): numel = np.prod(var.shape) assert numel == 1, "only one element variable can be converted to float." tensor = var.value().get_tensor() assert tensor._is_initialized(), "variable's tensor is not initialized" return float(var.numpy().flatten()[0]) def _long_(var): numel = np.prod(var.shape) assert numel == 1, "only one element variable can be converted to long." tensor = var.value().get_tensor() assert tensor._is_initialized(), "variable's tensor is not initialized" if six.PY2: return long(var.numpy().flatten()[0]) else: return int(var.numpy().flatten()[0]) def _int_(var): numel = np.prod(var.shape) assert numel == 1, "only one element variable can be converted to int." tensor = var.value().get_tensor() assert tensor._is_initialized(), "variable's tensor is not initialized" return int(var.numpy().flatten()[0]) def _len_(var): return var.shape[0] def _index_(var): numel = np.prod(var.shape) assert numel == 1, "only one element variable can be converted to python index." tensor = var.value().get_tensor() assert tensor._is_initialized(), "variable's tensor is not initialized" if six.PY2: return long(var.numpy().flatten()[0]) else: return int(var.numpy().flatten()[0]) @property def _ndim_(var): return len(var.shape) def _scalar_add_(var, value): return _scalar_elementwise_op_(var, 1.0, value) def _scalar_sub_(var, value): return _scalar_elementwise_op_(var, 1.0, -value) def _scalar_rsub_(var, value): return _scalar_elementwise_op_(var, -1.0, value) def _scalar_mul_(var, value): return _scalar_elementwise_op_(var, value, 0.0) def _scalar_div_(var, value): return _scalar_elementwise_op_(var, 1.0 / value, 0.0) # for binary operator such as elementwise, compare def _binary_creator_(method_name, op_type, reverse=False, scalar_method=None): def __impl__(self, other_var): # FIXME(zjl): elementwise_div between integers cannot be converted to scale, # which may lose accuracy. This is a hot fix for release 1.6. if scalar_method is not None and not ( op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_): if isinstance(other_var, float): if self.dtype in _supported_int_dtype_: assert other_var == int(other_var), \ "float value {} cannot convert to integer".format(other_var) return scalar_method(self, other_var) elif isinstance(other_var, int): return scalar_method(self, float(other_var)) lhs_dtype = self.dtype if not isinstance(other_var, core.VarBase): if reverse: other_var = create_tensor( other_var, dtype=lhs_dtype, shape=self.shape) else: # add fill_op other_var = create_scalar(value=other_var, dtype=lhs_dtype) rhs_dtype = other_var.dtype if lhs_dtype != rhs_dtype: other_var = astype(other_var, lhs_dtype) if reverse: tmp = self self = other_var other_var = tmp axis = -1 math_op = getattr(core.ops, op_type) return math_op(self, other_var, 'axis', axis) comment = OpProtoHolder.instance().get_op_proto(op_type).comment __impl__.__doc__ = """ {0} Args: self(Tensor): left hand Tensor other_var(Tensor|float|int): right hand Tensor Returns: Tensor """.format(comment) __impl__.__name__ = method_name return __impl__ # Todo(zhouwei): implement dygraph template to adapt to any function, receive('op_type', 'arg_template') # Such as _method_creator_('addmm', 'x, y, alpha=1.0, beta=1.0, name=None'). It can reduce call time. def _method_creator_(op_type, arg_template=None): def __impl__(self): op = getattr(core.ops, op_type) return op(self) __impl__.__doc__ = """ See paddle.{}""".format(op_type) __impl__.__name__ = op_type return __impl__ varbase_methods = [ # Type1: From custom fun or lambda ## b=-a ('__neg__', _neg_), ('__float__', _float_), ('__long__', _long_), ('__int__', _int_), ('__len__', _len_), ('__index__', _index_), ('astype', astype), ('dim', lambda x: len(x.shape)), ('ndimension', lambda x: len(x.shape)), ('ndim', _ndim_), ('size', lambda x: x.shape), # Type2: From Template that create core.ops automatically. It's recommended. ('__add__', _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)), ## a+b == b+a. Do not need to reverse explicitly ('__radd__', _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)), ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)), ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)), ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)), ## a*b == b*a. Do not need to reverse explicitly ('__rmul__', _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)), ('__div__', _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)), ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div', False, _scalar_div_)), ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True, None)), ('__rtruediv__', _binary_creator_('rtruediv__', 'elementwise_div', True, None)), ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False, None)), ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True, None)), ('__floordiv__', _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)), ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False, None)), ## for logical compare ('__eq__', _binary_creator_('__eq__', 'equal', False, None)), ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)), ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)), ('__le__', _binary_creator_('__le__', 'less_equal', False, None)), ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)), ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)), ('__array_ufunc__', None), ('sigmoid', _method_creator_('sigmoid', 'name=None')), ('log_sigmoid', _method_creator_('logsigmoid', 'name=None')), ('exp', _method_creator_('exp', 'name=None')), ('tanh', _method_creator_('tanh', 'name=None')), ('atan', _method_creator_('atan', 'name=None')), ('tanh_shrink', _method_creator_('tanh_shrink', 'name=None')), ('sqrt', _method_creator_('sqrt', 'name=None')), ('rsqrt', _method_creator_('rsqrt', 'name=None')), ('abs', _method_creator_('abs', 'name=None')), ('ceil', _method_creator_('ceil', 'name=None')), ('floor', _method_creator_('floor', 'name=None')), ('cos', _method_creator_('cos', 'name=None')), ('acos', _method_creator_('acos', 'name=None')), ('asin', _method_creator_('asin', 'name=None')), ('sin', _method_creator_('sin', 'name=None')), ('sinh', _method_creator_('sinh', 'name=None')), ('cosh', _method_creator_('cosh', 'name=None')), ('round', _method_creator_('round', 'name=None')), ('reciprocal', _method_creator_('reciprocal', 'name=None')), ('square', _method_creator_('square', 'name=None')), ('softplus', _method_creator_('softplus', 'name=None')), ('softsign', _method_creator_('softsign', 'name=None')), # Type3: Form module 'paddle.tensor' defaultly. # It's not a goodway, because it will increase call time. ] global _already_patch_varbase if not _already_patch_varbase: for method in varbase_methods: method_name = method[0] method_impl = method[1] setattr(core.VarBase, method_name, method_impl) else: import paddle.tensor for method_name in common_methods: if hasattr(core.VarBase, method_name): continue method_impl = getattr(paddle.tensor, method_name, None) if method_impl: setattr(core.VarBase, method_name, method_impl) _already_patch_varbase = True