/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "neon_util.h" #include "paddle/function/ConvOp.h" #include "paddle/function/Im2Col.h" namespace paddle { namespace neon { #if defined(__ARM_NEON__) || defined(__ARM_NEON) template struct DepthwiseConvKernel {}; inline float32_t conv3x3(float32x4_t r0, float32x4_t r1, float32x4_t r2, float32x4_t k0, float32x4_t k1, float32x4_t k2) { float32x4_t tmp; tmp = vmulq_f32(r0, k0); tmp = vmlaq_f32(tmp, r1, k1); tmp = vmlaq_f32(tmp, r2, k2); return vaddvq_f32(tmp); } inline float32_t conv4x4(float32x4_t r0, float32x4_t r1, float32x4_t r2, float32x4_t r3, float32x4_t k0, float32x4_t k1, float32x4_t k2, float32x4_t k3) { float32x4_t tmp; tmp = vmulq_f32(r0, k0); tmp = vmlaq_f32(tmp, r1, k1); tmp = vmlaq_f32(tmp, r2, k2); tmp = vmlaq_f32(tmp, r3, k3); return vaddvq_f32(tmp); } /** * Each step calculates four elements of the output. * First step: * R0[0, 1, 2, 3...] * K[0][0] * R0[1, 2, 3, 4...] * K[0][1] * R0[2, 3, 4, 5...] * K[0][2] * R1[0, 1, 2, 3...] * K[1][0] * R1[1, 2, 3, 4...] * K[1][1] * R1[2, 3, 4, 5...] * K[1][2] * R2[0, 1, 2, 3...] * K[2][0] * R2[1, 2, 3, 4...] * K[2][1] * + R2[2, 3, 4, 5...] * K[2][2] * ------------------------------ * Output[0, 1, 2, 3] */ template <> struct DepthwiseConvKernel<3, 1> { static void run(const float* inputData, const float* filterData, int inputHeight, int inputWidth, int outputChannels, int outputHeight, int outputWidth, int filterMultiplier, float* outputData) { const int steps = outputWidth >> 2; const int remain = outputWidth & 3; for (int c = 0; c < outputChannels; c++, filterData += 9) { // Load the filters float32x4_t k[3]; k[0] = vld1q_f32(filterData); k[1] = vld1q_f32(filterData + 3); k[2] = vld1q_f32(filterData + 6); k[0] = vsetq_lane_f32(0.f, k[0], 3); k[1] = vsetq_lane_f32(0.f, k[1], 3); k[2] = vsetq_lane_f32(0.f, k[2], 3); const float* r0 = inputData + (c / filterMultiplier) * (inputHeight * inputWidth); const float* r1 = r0 + inputWidth; const float* r2 = r0 + inputWidth * 2; float32x4_t input[3][3]; for (int h = 0; h < outputHeight; h++) { for (int s = 0; s < steps; s++) { // Load the inputs float32x4_t tmp; input[0][0] = vld1q_f32(r0); tmp = vld1q_f32(r0 + 4); input[0][1] = vextq_f32(input[0][0], tmp, 1); input[0][2] = vextq_f32(input[0][0], tmp, 2); input[1][0] = vld1q_f32(r1); tmp = vld1q_f32(r1 + 4); input[1][1] = vextq_f32(input[1][0], tmp, 1); input[1][2] = vextq_f32(input[1][0], tmp, 2); input[2][0] = vld1q_f32(r2); tmp = vld1q_f32(r2 + 4); input[2][1] = vextq_f32(input[2][0], tmp, 1); input[2][2] = vextq_f32(input[2][0], tmp, 2); float32x4_t tmp1 = vdupq_n_f32(0.f); float32x4_t tmp2 = vdupq_n_f32(0.f); tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[1][0], k[1], 0); tmp1 = vmlaq_laneq_f32(tmp1, input[1][1], k[1], 1); tmp2 = vmlaq_laneq_f32(tmp2, input[1][2], k[1], 2); tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); tmp1 = vaddq_f32(tmp1, tmp2); vst1q_f32(outputData, tmp1); r0 += 4; r1 += 4; r2 += 4; outputData += 4; } for (int r = 0; r < remain; r++) { float32x4_t i0 = vld1q_f32(r0); float32x4_t i1 = vld1q_f32(r1); float32x4_t i2 = vld1q_f32(r2); *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); r0++; r1++; r2++; outputData++; } r0 += 2; r1 += 2; r2 += 2; } } } }; /** * Each step calculates four elements of the output. * First step: * R0[0, 2, 4, 6...] * K[0][0] * R0[1, 3, 5, 7...] * K[0][1] * R0[2, 4, 6, 8...] * K[0][2] * R1[0, 2, 4, 6...] * K[1][0] * R1[1, 3, 5, 7...] * K[1][1] * R1[2, 4, 6, 8...] * K[1][2] * R2[0, 2, 4, 6...] * K[2][0] * R2[1, 3, 5, 7...] * K[2][1] * R2[2, 4, 6, 8...] * K[2][2] * ------------------------------ * Output[0, 1, 2, 3] */ template <> struct DepthwiseConvKernel<3, 2> { static void run(const float* inputData, const float* filterData, int inputHeight, int inputWidth, int outputChannels, int outputHeight, int outputWidth, int filterMultiplier, float* outputData) { const int steps = outputWidth >> 2; const int remain = outputWidth & 3; for (int c = 0; c < outputChannels; c++, filterData += 9) { // Load the filters float32x4_t k[3]; k[0] = vld1q_f32(filterData); k[1] = vld1q_f32(filterData + 3); k[2] = vld1q_f32(filterData + 6); k[0] = vsetq_lane_f32(0.f, k[0], 3); k[1] = vsetq_lane_f32(0.f, k[1], 3); k[2] = vsetq_lane_f32(0.f, k[2], 3); const float* start = inputData + (c / filterMultiplier) * (inputHeight * inputWidth); float32x4_t input[3][3]; for (int h = 0; h < outputHeight; h++) { const float* r0 = start + 2 * h * inputWidth; const float* r1 = start + (2 * h + 1) * inputWidth; const float* r2 = start + (2 * h + 2) * inputWidth; for (int s = 0; s < steps; s++) { // Load the inputs float32x4_t data1; float32x4x2_t data2; data2 = vld2q_f32(r0); input[0][0] = data2.val[0]; input[0][1] = data2.val[1]; data1 = vld1q_f32(r0 + 8); input[0][2] = vextq_f32(data2.val[0], data1, 1); data2 = vld2q_f32(r1); input[1][0] = data2.val[0]; input[1][1] = data2.val[1]; data1 = vld1q_f32(r1 + 8); input[1][2] = vextq_f32(data2.val[0], data1, 1); data2 = vld2q_f32(r2); input[2][0] = data2.val[0]; input[2][1] = data2.val[1]; data1 = vld1q_f32(r2 + 8); input[2][2] = vextq_f32(data2.val[0], data1, 1); float32x4_t tmp1 = vdupq_n_f32(0.f); float32x4_t tmp2 = vdupq_n_f32(0.f); tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[1][0], k[1], 0); tmp1 = vmlaq_laneq_f32(tmp1, input[1][1], k[1], 1); tmp2 = vmlaq_laneq_f32(tmp2, input[1][2], k[1], 2); tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); tmp1 = vaddq_f32(tmp1, tmp2); vst1q_f32(outputData, tmp1); r0 += 8; r1 += 8; r2 += 8; outputData += 4; } for (int r = 0; r < remain; r++) { float32x4_t i0 = vld1q_f32(r0); float32x4_t i1 = vld1q_f32(r1); float32x4_t i2 = vld1q_f32(r2); *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); r0 += 2; r1 += 2; r2 += 2; outputData++; } } } } }; /** * Each step calculates four elements of the output. */ template <> struct DepthwiseConvKernel<4, 1> { static void run(const float* inputData, const float* filterData, int inputHeight, int inputWidth, int outputChannels, int outputHeight, int outputWidth, int filterMultiplier, float* outputData) { const int steps = outputWidth >> 2; const int remain = outputWidth & 3; for (int c = 0; c < outputChannels; c++, filterData += 16) { // Load the filters float32x4_t k[4]; k[0] = vld1q_f32(filterData); k[1] = vld1q_f32(filterData + 4); k[2] = vld1q_f32(filterData + 8); k[3] = vld1q_f32(filterData + 12); const float* r0 = inputData + (c / filterMultiplier) * (inputHeight * inputWidth); const float* r1 = r0 + inputWidth; const float* r2 = r0 + inputWidth * 2; const float* r3 = r0 + inputWidth * 3; float32x4_t input[4][4]; for (int h = 0; h < outputHeight; h++) { for (int s = 0; s < steps; s++) { // Load the inputs float32x4_t tmp; input[0][0] = vld1q_f32(r0); tmp = vld1q_f32(r0 + 4); input[0][1] = vextq_f32(input[0][0], tmp, 1); input[0][2] = vextq_f32(input[0][0], tmp, 2); input[0][3] = vextq_f32(input[0][0], tmp, 3); input[1][0] = vld1q_f32(r1); tmp = vld1q_f32(r1 + 4); input[1][1] = vextq_f32(input[1][0], tmp, 1); input[1][2] = vextq_f32(input[1][0], tmp, 2); input[1][3] = vextq_f32(input[1][0], tmp, 3); input[2][0] = vld1q_f32(r2); tmp = vld1q_f32(r2 + 4); input[2][1] = vextq_f32(input[2][0], tmp, 1); input[2][2] = vextq_f32(input[2][0], tmp, 2); input[2][3] = vextq_f32(input[2][0], tmp, 3); input[3][0] = vld1q_f32(r3); tmp = vld1q_f32(r3 + 4); input[3][1] = vextq_f32(input[3][0], tmp, 1); input[3][2] = vextq_f32(input[3][0], tmp, 2); input[3][3] = vextq_f32(input[3][0], tmp, 3); float32x4_t tmp1 = vdupq_n_f32(0.f); float32x4_t tmp2 = vdupq_n_f32(0.f); tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[0][3], k[0], 3); tmp1 = vmlaq_laneq_f32(tmp1, input[1][0], k[1], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[1][1], k[1], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[1][2], k[1], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[1][3], k[1], 3); tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[2][3], k[2], 3); tmp1 = vmlaq_laneq_f32(tmp1, input[3][0], k[3], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[3][1], k[3], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[3][2], k[3], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[3][3], k[3], 3); tmp1 = vaddq_f32(tmp1, tmp2); vst1q_f32(outputData, tmp1); r0 += 4; r1 += 4; r2 += 4; r3 += 4; outputData += 4; } for (int r = 0; r < remain; r++) { float32x4_t i0 = vld1q_f32(r0); float32x4_t i1 = vld1q_f32(r1); float32x4_t i2 = vld1q_f32(r2); float32x4_t i3 = vld1q_f32(r3); *outputData = conv4x4(i0, i1, i2, i3, k[0], k[1], k[2], k[3]); r0++; r1++; r2++; r3++; outputData++; } r0 += 3; r1 += 3; r2 += 3; r3 += 3; } } } }; /** * Each step calculates four elements of the output. */ template <> struct DepthwiseConvKernel<4, 2> { static void run(const float* inputData, const float* filterData, int inputHeight, int inputWidth, int outputChannels, int outputHeight, int outputWidth, int filterMultiplier, float* outputData) { const int steps = outputWidth >> 2; const int remain = outputWidth & 3; for (int c = 0; c < outputChannels; c++, filterData += 16) { // Load the filters float32x4_t k[4]; k[0] = vld1q_f32(filterData); k[1] = vld1q_f32(filterData + 4); k[2] = vld1q_f32(filterData + 8); k[3] = vld1q_f32(filterData + 12); const float* start = inputData + (c / filterMultiplier) * (inputHeight * inputWidth); float32x4_t input[4][4]; for (int h = 0; h < outputHeight; h++) { const float* r0 = start + 2 * h * inputWidth; const float* r1 = start + (2 * h + 1) * inputWidth; const float* r2 = start + (2 * h + 2) * inputWidth; const float* r3 = start + (2 * h + 3) * inputWidth; for (int s = 0; s < steps; s++) { // Load the inputs float32x4x2_t data1; float32x4x2_t data2; data1 = vld2q_f32(r0); data2 = vld2q_f32(r0 + 8); input[0][0] = data1.val[0]; input[0][1] = data1.val[1]; input[0][2] = vextq_f32(data1.val[0], data2.val[0], 1); input[0][3] = vextq_f32(data1.val[1], data2.val[1], 1); data1 = vld2q_f32(r1); data2 = vld2q_f32(r1 + 8); input[1][0] = data1.val[0]; input[1][1] = data1.val[1]; input[1][2] = vextq_f32(data1.val[0], data2.val[0], 1); input[1][3] = vextq_f32(data1.val[1], data2.val[1], 1); data1 = vld2q_f32(r2); data2 = vld2q_f32(r2 + 8); input[2][0] = data1.val[0]; input[2][1] = data1.val[1]; input[2][2] = vextq_f32(data1.val[0], data2.val[0], 1); input[2][3] = vextq_f32(data1.val[1], data2.val[1], 1); data1 = vld2q_f32(r3); data2 = vld2q_f32(r3 + 8); input[3][0] = data1.val[0]; input[3][1] = data1.val[1]; input[3][2] = vextq_f32(data1.val[0], data2.val[0], 1); input[3][3] = vextq_f32(data1.val[1], data2.val[1], 1); float32x4_t tmp1 = vdupq_n_f32(0.f); float32x4_t tmp2 = vdupq_n_f32(0.f); tmp1 = vmlaq_laneq_f32(tmp1, input[0][0], k[0], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[0][1], k[0], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[0][2], k[0], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[0][3], k[0], 3); tmp1 = vmlaq_laneq_f32(tmp1, input[1][0], k[1], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[1][1], k[1], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[1][2], k[1], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[1][3], k[1], 3); tmp1 = vmlaq_laneq_f32(tmp1, input[2][0], k[2], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[2][1], k[2], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[2][2], k[2], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[2][3], k[2], 3); tmp1 = vmlaq_laneq_f32(tmp1, input[3][0], k[3], 0); tmp2 = vmlaq_laneq_f32(tmp2, input[3][1], k[3], 1); tmp1 = vmlaq_laneq_f32(tmp1, input[3][2], k[3], 2); tmp2 = vmlaq_laneq_f32(tmp2, input[3][3], k[3], 3); tmp1 = vaddq_f32(tmp1, tmp2); vst1q_f32(outputData, tmp1); r0 += 8; r1 += 8; r2 += 8; r3 += 8; outputData += 4; } for (int r = 0; r < remain; r++) { float32x4_t i0 = vld1q_f32(r0); float32x4_t i1 = vld1q_f32(r1); float32x4_t i2 = vld1q_f32(r2); float32x4_t i3 = vld1q_f32(r3); *outputData = conv4x4(i0, i1, i2, i3, k[0], k[1], k[2], k[3]); r0 += 2; r1 += 2; r2 += 2; r3 += 2; outputData++; } } } } }; template class NeonDepthwiseConvFunction : public ConvFunctionBase { public: void init(const FuncConfig& config) override { ConvFunctionBase::init(config); } void check(const BufferArgs& inputs, const BufferArgs& outputs) override { const TensorShape& input = inputs[0].shape(); const TensorShape& filter = inputs[1].shape(); const TensorShape& output = outputs[0].shape(); checkShape(input, filter, output); } void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { CHECK_EQ(numInputs_, inputs.size()); CHECK_EQ(numOutputs_, outputs.size()); check(inputs, outputs); const TensorShape& input = inputs[0].shape(); const TensorShape& filter = inputs[1].shape(); const TensorShape& output = outputs[0].shape(); size_t batchSize = input[0]; size_t inputChannels = input[1]; size_t inputHeight = input[2]; size_t inputWidth = input[3]; size_t filterHeight = getFilterHeight(filter); size_t filterWidth = getFilterWidth(filter); size_t outputChannels = output[1]; size_t outputHeight = output[2]; size_t outputWidth = output[3]; size_t filterMultiplier = outputChannels / groups_; CHECK_EQ(inputChannels, groups_); // only support strideH() == strideW() and filterHeight == filterWidth. CHECK_EQ(strideH(), strideW()); CHECK_EQ(filterHeight, filterWidth); float* inputData = inputs[0].data(); float* filterData = inputs[1].data(); float* outputData = outputs[0].data(); // padding the input float* inputPadding = inputData; if (paddingH() > 0 || paddingW() > 0) { int newSize = batchSize * inputChannels * (inputHeight + 2 * paddingH()) * (inputWidth + 2 * paddingW()); resizeBuffer(newSize); inputPadding = reinterpret_cast(memory_->getBuf()); Padding::run(inputData, inputPadding, batchSize * inputChannels, inputHeight, inputWidth, paddingH(), paddingW()); // height and width of padding data inputHeight += 2 * paddingH(); inputWidth += 2 * paddingW(); } std::function DepthWiseConv; if (filterWidth == 3 && strideW() == 1) { DepthWiseConv = DepthwiseConvKernel<3, 1>::run; } else if (filterWidth == 3 && strideW() == 2) { DepthWiseConv = DepthwiseConvKernel<3, 2>::run; } else if (filterWidth == 4 && strideW() == 1) { DepthWiseConv = DepthwiseConvKernel<4, 1>::run; } else if (filterWidth == 4 && strideW() == 2) { DepthWiseConv = DepthwiseConvKernel<4, 2>::run; } else { LOG(FATAL) << "Not supported"; } for (size_t i = 0; i < batchSize; i++) { DepthWiseConv(inputPadding, filterData, inputHeight, inputWidth, outputChannels, outputHeight, outputWidth, filterMultiplier, outputData); inputPadding += inputChannels * inputHeight * inputWidth; outputData += outputChannels * outputHeight * outputWidth; } } }; REGISTER_TYPED_FUNC(NeonDepthwiseConv, CPU, NeonDepthwiseConvFunction); #endif } // namespace neon } // namespace paddle