// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "test_helper.h" // NOLINT #include "test_suite.h" // NOLINT DEFINE_string(modeldir, "", "Directory of the inference model."); namespace paddle_infer { paddle::test::Record PrepareInput(int batch_size, int shape_size = 224) { // init input data int channel = 3; int width = shape_size; // w = 224 int height = shape_size; // h = 224 paddle::test::Record image_Record; int input_num = batch_size * channel * width * height; std::vector input_data(input_num, 1); image_Record.data = input_data; image_Record.shape = std::vector{batch_size, channel, width, height}; image_Record.type = paddle::PaddleDType::FLOAT32; return image_Record; } TEST(tensorrt_tester_mobilenetv1, tuned_dynamic_trt_fp32_bz2) { bool tuned_shape = true; std::string shape_range_info = FLAGS_modeldir + "/shape_range_info.pbtxt"; LOG(INFO) << "tensorrt tuned info saved to " << shape_range_info; // init input data std::map my_input_data_map; my_input_data_map["x"] = PrepareInput(2, 448); // init output data std::map infer_output_data, truth_output_data; if (tuned_shape) { // NOTE: shape_range_info will be saved after destructor of predictor // function // prepare groudtruth config paddle_infer::Config tune_config; tune_config.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); tune_config.SwitchIrOptim(false); tune_config.EnableUseGpu(1000, 0); tune_config.CollectShapeRangeInfo(shape_range_info); auto predictor_tune = paddle_infer::CreatePredictor(tune_config); SingleThreadPrediction(predictor_tune.get(), &my_input_data_map, &truth_output_data, 1); } // prepare inference config paddle_infer::Config config; config.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config.EnableUseGpu(1000, 0); config.EnableTensorRtEngine( 1 << 20, 2, 5, paddle_infer::PrecisionType::kFloat32, false, false); config.EnableTunedTensorRtDynamicShape(shape_range_info, true); LOG(INFO) << config.Summary(); paddle_infer::services::PredictorPool pred_pool(config, 1); SingleThreadPrediction(pred_pool.Retrive(0), &my_input_data_map, &infer_output_data); // check outputs CompareRecord(&truth_output_data, &infer_output_data); VLOG(1) << "finish test"; } } // namespace paddle_infer int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true); return RUN_ALL_TESTS(); }