/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/inference/anakin/convert/op_converter.h" #include "paddle/fluid/inference/anakin/engine.h" #include "paddle/fluid/inference/analysis/helper.h" #include "paddle/fluid/inference/utils/singleton.h" #include "paddle/fluid/platform/enforce.h" using anakin::Precision; using anakin::saber::X86; namespace paddle { namespace inference { namespace anakin { /* * Get a random float value between [low, high] */ float random(float low, float high) { static std::random_device rd; static std::mt19937 mt(rd()); std::uniform_real_distribution dist(low, high); return dist(mt); } void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place) { auto dims = tensor->dims(); size_t num_elements = analysis::AccuDims(dims, dims.size()); PADDLE_ENFORCE_GT(num_elements, 0); platform::CPUPlace cpu_place; framework::LoDTensor temp_tensor; temp_tensor.Resize(dims); auto* temp_data = temp_tensor.mutable_data(cpu_place); for (size_t i = 0; i < num_elements; i++) { *(temp_data + i) = random(0., 1.); } TensorCopySync(temp_tensor, place, tensor); } /* * Help to validate the correctness between Fluid Op and the corresponding * anakin * layer. */ template class AnakinConvertValidation { using AnakinNvEngineT = AnakinEngine; public: AnakinConvertValidation() = delete; AnakinConvertValidation(const std::unordered_set& parameters, framework::Scope* scope, const platform::DeviceContext& ctx, bool use_gpu = true) : parameters_(parameters), scope_(scope), ctx_(ctx), use_gpu_(use_gpu) { engine_.reset(new AnakinEngine(true)); } // Declare a Variable as input with random initialization. void DeclInputVar(const std::string& name, const std::vector tensor_dims) { DeclVar(name, tensor_dims); // should decalre anakin input here. } void DeclParamVar(const std::string& name, const std::vector dim_vec) { DeclVar(name, dim_vec); } void DeclOutputVar(const std::string& name, const std::vector dim_vec) { DeclVar(name, dim_vec); // should declare anakin output here. } void DeclVar(const std::string& name, const std::vector dim_vec) { auto* x = scope_->Var(name); auto* x_tensor = x->GetMutable(); x_tensor->Resize(framework::make_ddim(dim_vec)); RandomizeTensor(x_tensor, ctx_.GetPlace()); std::vector dim_vec_int64; for (auto& ele : dim_vec) { dim_vec_int64.push_back(static_cast(ele)); } // Add var_desc to block_desc auto* block_desc = program_desc_.MutableBlock(framework::kRootBlockIndex); auto* var_desc = block_desc->Var(name); var_desc->SetShape(dim_vec_int64); } void SetOp(const framework::proto::OpDesc& desc) { op_ = framework::OpRegistry::CreateOp(desc); op_desc_.reset(new framework::OpDesc(desc, nullptr)); // should init anakin engine here. auto& block_desc = program_desc_.Block(framework::kRootBlockIndex); Singleton>::Global().ConvertOp( desc, block_desc, parameters_, *scope_, engine_.get(), true /*test_mode*/); engine_->Freeze(); std::map> temp_max_input_shape; for (const auto& input : op_desc_->InputArgumentNames()) { if (parameters_.count(input)) continue; auto& t = inference::analysis::GetFromScope(*scope_, input); auto t_shape = framework::vectorize2int(t.dims()); while (t_shape.size() < 4) { t_shape.push_back(1); } engine_->SetInputShape(input, t_shape); temp_max_input_shape[input] = t_shape; } engine_->SetMaxInputShape(temp_max_input_shape); engine_->Optimize(); engine_->InitNet(); } // We use the set 'neglected_output' here, because some Ops like batch norm, // the outputs specified in the op des are only used during training, // so we should neglect those output during inference. void Execute(int batch_size, std::unordered_set neglected_output = {}) { // Execute Fluid Op op_->Run(*scope_, ctx_.GetPlace()); std::map inputs; for (const auto& input : op_desc_->InputArgumentNames()) { if (parameters_.count(input)) continue; auto* var = scope_->FindVar(input); auto tensor = var->GetMutable(); inputs.insert({input, tensor}); } std::map outputs; std::vector> fluid_outputs; for (const auto& output : op_desc_->OutputArgumentNames()) { if (neglected_output.count(output)) continue; std::vector fluid_out; auto* var = scope_->FindVar(output); auto tensor = var->GetMutable(); framework::TensorToVector(*tensor, ctx_, &fluid_out); fluid_outputs.push_back(fluid_out); outputs.insert({output, tensor}); } if (!use_gpu_) { engine_->Execute(inputs, outputs); } else { cudaStream_t stream; PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream), 0); engine_->Execute(inputs, outputs, stream); } int i_output = 0; for (const auto& output : op_desc_->OutputArgumentNames()) { if (neglected_output.count(output)) continue; std::vector anakin_out; auto* var = scope_->FindVar(output); auto tensor = var->GetMutable(); framework::TensorToVector(*tensor, ctx_, &anakin_out); size_t anakin_out_size = anakin_out.size(); auto fluid_out = fluid_outputs[i_output++]; for (size_t i = 0; i < anakin_out_size; i++) { EXPECT_LT(std::abs(fluid_out[i] - anakin_out[i]), 1e-3); } } } private: std::unique_ptr engine_{nullptr}; std::unique_ptr op_; std::unique_ptr op_desc_; framework::ProgramDesc program_desc_; const std::unordered_set& parameters_; framework::Scope* scope_; const platform::DeviceContext& ctx_; bool use_gpu_{true}; }; template class AnakinConvertValidation<::anakin::saber::NV, ::anakin::Precision::FP32>; template class AnakinConvertValidation<::anakin::saber::X86, ::anakin::Precision::FP32>; template class AnakinConvertValidation<::anakin::saber::NV, ::anakin::Precision::INT8>; template class AnakinConvertValidation<::anakin::saber::X86, ::anakin::Precision::INT8>; } // namespace anakin } // namespace inference } // namespace paddle