// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include "glog/logging.h" #include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimize_helper.h" #include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/type_defs.h" namespace paddle { namespace framework { /* Inplace Inference for create In->Out pairs for inplaced operator. If we specify a pair of corresponding names. For example, X->Out. then Out will inplaced use X's memory. The base class will do legality validation for both variables. */ class InplaceOpInference { public: virtual ~InplaceOpInference() {} virtual std::unordered_map operator()( const OpDesc& op_desc, bool use_cuda) const = 0; }; /* Inplace In and Out for operator only have an Input and an Output. For example, activation op. */ class SingleOpInplaceInToOut : public InplaceOpInference { public: std::unordered_map operator()( const OpDesc& op_desc, bool use_cuda) const override { PADDLE_ENFORCE(!op_desc.InputNames().empty(), "Op inputs must not be empty"); PADDLE_ENFORCE(!op_desc.OutputNames().empty(), "Op outputs must not be empty"); auto x_name = op_desc.InputNames().at(0); auto out_name = op_desc.OutputNames().at(0); return std::unordered_map{{x_name, out_name}}; } }; /* Gradient op. Inplace output use it's Input. For example, Input@Grad->Input reuse strategy. */ class GradOpInplaceInToOut : public InplaceOpInference { public: std::unordered_map operator()( const OpDesc& op_desc, bool use_cuda) const override { std::unordered_map ret; std::unordered_set output_names(op_desc.OutputNames().begin(), op_desc.OutputNames().end()); for (auto& input_name : op_desc.InputNames()) { if (output_names.count(GradVarName(input_name))) { ret.insert({input_name, GradVarName(input_name)}); } } return ret; } }; } // namespace framework } // namespace paddle