# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid.core as core from paddle.fluid.op import Operator from op_test import OpTest class TestSGDOp(OpTest): def setUp(self): self.op_type = "sgd" w = np.random.random((102, 105)).astype("float32") g = np.random.random((102, 105)).astype("float32") lr = np.array([0.1]).astype("float32") self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr} self.outputs = {'ParamOut': w - lr * g} def test_check_output(self): self.check_output() class TestSparseSGDOp(unittest.TestCase): def check_with_place(self, place): scope = core.Scope() # create and initialize Grad Variable height = 10 rows = [0, 4, 7] row_numel = 12 grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(height) grad_selected_rows.set_rows(rows) np_array = np.ones((len(rows), row_numel)).astype("float32") np_array[0, 0] = 2.0 np_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(np_array, place) # create and initialize Param Variable param = scope.var('Param').get_tensor() param_array = np.full((height, row_numel), 5.0).astype("float32") param.set(param_array, place) # create and initialize LeraningRate Variable lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), 2.0).astype("float32") lr.set(lr_array, place) # create and run sgd operator sgd_op = Operator( "sgd", Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate') sgd_op.run(scope, place) # get and compare result result_array = np.array(param) # rows[0] = 0, 5.0 - 2.0 * 2.0 self.assertAlmostEqual(1.0, result_array[rows[0], 0]) # rows[0] = 0, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[0], 2]) # 5.0 - 2.0 * 0.0 self.assertAlmostEqual(5.0, result_array[1, 0]) # rows[1] = 4, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[1], 10]) # 5.0 - 2.0 * 0.0 self.assertAlmostEqual(5.0, result_array[5, 8]) # rows[2] = 7, 5.0 - 2.0 * 1.0 self.assertAlmostEqual(3.0, result_array[rows[2], 1]) # rows[2] = 7, 5.0 - 2.0 * 4.0 self.assertAlmostEqual(-3.0, result_array[rows[2], 8]) def test_sparse_sgd(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) class TestSGDOpOptimizeSelectedRows(unittest.TestCase): def check_with_place(self, place): scope = core.Scope() row_width = 12 # create and initialize Grad Variable grad_height = 10 grad_rows = [0, 4, 7] grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(grad_height) grad_selected_rows.set_rows(grad_rows) grad_array = np.ones((len(grad_rows), row_width)).astype("float32") grad_array[0, 0] = 2.0 grad_array[2, 8] = 4.0 grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(grad_array, place) # create and initialize Param Variable # create and initialize W Variable param_rows = [0, 1, 2, 3, 4, 5, 6, 7] # init Param w_selected_rows = scope.var('Param').get_selected_rows() w_selected_rows.set_height(len(param_rows)) w_selected_rows.set_rows(param_rows) w_array = np.ones((len(param_rows), row_width)).astype("float32") for i in range(len(param_rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) w_before_optimize = np.array(w_tensor) print(w_before_optimize) # create and initialize LeraningRate Variable lr_value = 0.1 lr = scope.var('LearningRate').get_tensor() lr_array = np.full((1), lr_value).astype("float32") lr.set(lr_array, place) # optimize with Python w_after_optimize = np.copy(w_before_optimize) for index, id in enumerate(grad_rows): w_after_optimize[id] = w_before_optimize[ id] - lr_value * grad_array[index] # create and run sgd operator sgd_op = Operator( "sgd", Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate') sgd_op.run(scope, place) # get and compare result result_array = np.array(w_tensor) assert (result_array == w_after_optimize).all() def test_sparse_sgd(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.check_with_place(place) if __name__ == "__main__": unittest.main()