# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle from paddle import _C_ops from paddle.fluid import core from paddle.fluid.framework import _test_eager_guard class TestSparseUtils(unittest.TestCase): def test_create_sparse_coo_tensor(self): with _test_eager_guard(): non_zero_indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]] non_zero_elements = [1, 2, 3, 4, 5] dense_shape = [3, 4] dense_indices = paddle.to_tensor(non_zero_indices) dense_elements = paddle.to_tensor( non_zero_elements, dtype='float32') stop_gradient = False coo = core.eager.sparse_coo_tensor(dense_indices, dense_elements, dense_shape, stop_gradient) print(coo) def test_create_sparse_csr_tensor(self): with _test_eager_guard(): non_zero_crows = [0, 2, 3, 5] non_zero_cols = [1, 3, 2, 0, 1] non_zero_elements = [1, 2, 3, 4, 5] dense_shape = [3, 4] dense_crows = paddle.to_tensor(non_zero_crows) dense_cols = paddle.to_tensor(non_zero_cols) dense_elements = paddle.to_tensor( non_zero_elements, dtype='float32') stop_gradient = False csr = core.eager.sparse_csr_tensor(dense_crows, dense_cols, dense_elements, dense_shape, stop_gradient) print(csr) def test_to_sparse_coo(self): with _test_eager_guard(): x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]] non_zero_indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]] non_zero_elements = [1, 2, 3, 4, 5] dense_x = paddle.to_tensor(x) out = dense_x.to_sparse_coo(2) assert np.array_equal(out.non_zero_indices().numpy(), non_zero_indices) assert np.array_equal(out.non_zero_elements().numpy(), non_zero_elements) dense_tensor = out.to_dense() assert np.array_equal(dense_tensor.numpy(), x) def test_to_sparse_csr(self): with _test_eager_guard(): x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]] non_zero_crows = [0, 2, 3, 5] non_zero_cols = [1, 3, 2, 0, 1] non_zero_elements = [1, 2, 3, 4, 5] dense_x = paddle.to_tensor(x) out = dense_x.to_sparse_csr() print(out) assert np.array_equal(out.non_zero_crows().numpy(), non_zero_crows) assert np.array_equal(out.non_zero_cols().numpy(), non_zero_cols) assert np.array_equal(out.non_zero_elements().numpy(), non_zero_elements) dense_tensor = out.to_dense() assert np.array_equal(dense_tensor.numpy(), x) if __name__ == "__main__": unittest.main()