/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "MKLDNNAddtoLayer.h" using namespace mkldnn; // NOLINT namespace paddle { REGISTER_LAYER(mkldnn_addto, MKLDNNAddtoLayer); bool MKLDNNAddtoLayer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { if (!MKLDNNLayer::init(layerMap, parameterMap)) { return false; } layerSize_ = getSize(); for (size_t i = 0; i < inputLayers_.size(); i++) { CHECK_EQ(layerSize_, inputLayers_[i]->getSize()) << "input size must equal"; } if (biasParameter_.get() != NULL) { biases_ = std::unique_ptr(new Weight(1, layerSize_, biasParameter_, 0)); } return true; } void MKLDNNAddtoLayer::reshape( int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { CHECK_EQ(layerSize_, getSize()) << "this layer size can not be changed"; reshapeInput(bs, ih, iw); ic = inputLayers_[0]->getSize() / ih / iw; CHECK_EQ((size_t)ic * ih * iw, inputLayers_[0]->getSize()); CHECK_EQ(inputElemenCnt_, (size_t)bs * ic * ih * iw); for (size_t i = 0; i < inputLayers_.size(); i++) { CHECK_EQ(int64_t(bs), inputLayers_[i]->getOutput().getBatchSize()); CHECK_EQ(layerSize_, inputLayers_[i]->getSize()); } oc = ic; oh = ih; ow = iw; reshapeOutput(oh, ow); resizeOutput(bs, oc * oh * ow); } void MKLDNNAddtoLayer::resetFwd(std::vector& pipeline, std::vector& inputs, MKLDNNMatrixPtr& out) { resetFwdBuffers(inputs, biasVal_, out); std::shared_ptr fwdPD; std::shared_ptr biasPD; resetFwdPD(fwdPD, biasPD, inputs, biasVal_, out); resetFwdPipeline(pipeline, fwdPD, biasPD, inputs, biasVal_, out); } void MKLDNNAddtoLayer::resetBwd(std::vector& pipeline, std::vector& inputs, MKLDNNMatrixPtr& out) { resetBwdBuffers(inputs, biasGrad_, out); // backward only need share output grad to input grad for (size_t i = 0; i < inputs.size(); i++) { if (inputs[i] != nullptr) { inputs[i] = out; inputLayers_[i]->getOutputGrad()->setData(inputs[i]->getData()); } } // backward bias bwdBias_ = nullptr; if (biasGrad_) { std::vector scales(bs_, 1.0); std::vector srcPDs(bs_, biasGrad_->getPrimitiveDesc()); auto biasPD = sum::primitive_desc(biasGrad_->getMemoryDesc(), scales, srcPDs); std::vector srcs; for (size_t i = 0; i < grads_.size(); ++i) { srcs.push_back(*(grads_[i])); } bwdBias_.reset(new sum(biasPD, srcs, *biasGrad_)); pipeline.push_back(*bwdBias_); } } void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) { if (biases_ && biases_->getWGrad()) { biases_->getParameterPtr()->incUpdate(callback); } } void MKLDNNAddtoLayer::prepareBias(MKLDNNMatrixPtr& bias, const MatrixPtr& biasMat, const MKLDNNMatrixPtr& out, std::vector& outs) { auto pd = MKLDNNMatrix::createPrimitiveDesc( {(int)layerSize_}, memory::format::x, engine_); bias = MKLDNNMatrix::create(pd, biasMat); outs.clear(); real* data = out->getData(); CHECK_EQ(bs_ * layerSize_, out->getElementCnt()); for (int i = 0; i < bs_; ++i) { MatrixPtr tmp = Matrix::create(data + i * layerSize_, 1, layerSize_, false, false); outs.push_back(MKLDNNMatrix::create(bias->getPrimitiveDesc(), tmp)); } } void MKLDNNAddtoLayer::resetFwdBuffers(std::vector& inputs, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { inputs.resize(inputLayers_.size()); for (size_t i = 0; i < inputs.size(); i++) { resetInValue(inputs[i], nullptr, i); CHECK(inputs[i]); inputs[i]->downSpatial(); } for (size_t i = 1; i < inputs.size(); i++) { CHECK_PRIMITIVE_DESC_EQ(inputs[i], inputs[0]->getPrimitiveDesc()); } resetOutValue(out, inputs[0]->getPrimitiveDesc()); if (biases_ && biases_->getW()) { prepareBias(bias, biases_->getW(), out, vals_); } else { bias = nullptr; } } void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr& pd, std::shared_ptr& biasPD, std::vector& inputs, MKLDNNMatrixPtr bias, MKLDNNMatrixPtr out) { std::vector scales(inputs.size(), 1.0); std::vector srcPDs; for (size_t i = 0; i < inputs.size(); i++) { srcPDs.push_back(inputs[i]->getPrimitiveDesc()); } CHECK(out); pd.reset(new sum::primitive_desc(out->getMemoryDesc(), scales, srcPDs)); CHECK_PRIMITIVE_DESC_EQ(out, pd->dst_primitive_desc()); biasPD = nullptr; if (bias) { std::vector scales(2, 1.0); std::vector srcPDs(2, bias->getPrimitiveDesc()); biasPD.reset( new sum::primitive_desc(bias->getMemoryDesc(), scales, srcPDs)); CHECK_PRIMITIVE_DESC_EQ(bias, biasPD->dst_primitive_desc()); } } void MKLDNNAddtoLayer::resetFwdPipeline( std::vector& pipeline, std::shared_ptr& pd, std::shared_ptr& biasPD, std::vector& inputs, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { std::vector srcs; for (size_t i = 0; i < inputs.size(); i++) { srcs.push_back(*(inputs[i])); } fwd_.reset(new sum(*pd, srcs, *out)); pipeline.push_back(*fwd_); fwdBias_.clear(); if (biasPD == nullptr || bias == nullptr) { return; } fwdBias_.resize(vals_.size()); for (size_t i = 0; i < vals_.size(); ++i) { std::vector srcs; srcs.push_back(*(vals_[i])); srcs.push_back(*bias); fwdBias_[i].reset(new sum(*biasPD, srcs, *vals_[i])); pipeline.push_back(*fwdBias_[i]); } } void MKLDNNAddtoLayer::resetBwdBuffers(std::vector& inputs, MKLDNNMatrixPtr& bias, MKLDNNMatrixPtr& out) { CHECK(outVal_); resetOutGrad(out, outVal_->getPrimitiveDesc()); CHECK(out); inputs.resize(inputLayers_.size()); for (size_t i = 0; i < inputs.size(); i++) { resetInGrad(inputs[i], inVals_[i]->getPrimitiveDesc(), i); CHECK_PRIMITIVE_DESC_EQ(inputs[i], out->getPrimitiveDesc()); } if (biases_ && biases_->getWGrad()) { prepareBias(bias, biases_->getWGrad(), out, grads_); } else { bias = nullptr; } } } // namespace paddle