/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include // NOLINT #include "google/protobuf/text_format.h" #include "gtest/gtest.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/operators/distributed/distributed.h" #include "paddle/fluid/operators/distributed/grpc/grpc_serde.h" #include "paddle/fluid/operators/distributed/grpc/grpc_variable_response.h" #include "paddle/fluid/operators/distributed/sendrecvop_utils.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/string/printf.h" namespace framework = paddle::framework; namespace platform = paddle::platform; namespace operators = paddle::operators; namespace math = paddle::operators::math; namespace memory = paddle::memory; void RunSerdeTestSelectedRows(platform::Place place) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto& ctx = *pool.Get(place); // serialize var to ByteBuffer framework::Variable var; auto* slr = var.GetMutable(); slr->set_height(1000); auto* tensor = slr->mutable_value(); auto* rows = slr->mutable_rows(); tensor->Resize(framework::make_ddim({564, 128})); tensor->mutable_data(place); int tensor_numel = 564 * 128; math::set_constant(ctx, tensor, 32.7); for (int i = 0; i < 564; ++i) rows->push_back(i); ::grpc::ByteBuffer msg; operators::distributed::SerializeToByteBuffer("myvar", &var, ctx, &msg); EXPECT_GT(msg.Length(), static_cast(0)); // deserialize std::vector<::grpc::Slice> slices; (void)msg.Dump(&slices); std::string tmp; for (const auto& s : slices) { tmp.append(reinterpret_cast(s.begin()), s.size()); } sendrecv::VariableMessage varmsg; EXPECT_TRUE(varmsg.ParseFromString(tmp)); // deserialize bytebuffer EXPECT_EQ(varmsg.varname(), "myvar"); EXPECT_EQ(varmsg.type(), 1); const float* tensor_data = reinterpret_cast(varmsg.serialized().data()); const int64_t* rows_data = reinterpret_cast(varmsg.rows().data()); for (int i = 0; i < tensor_numel; ++i) { EXPECT_FLOAT_EQ(tensor_data[i], 32.7); } for (int i = 0; i < 564; ++i) { EXPECT_EQ(rows_data[i], i); } // deserialize zero-copy // framework::Variable var2; // operators::distributed::DeserializeFromByteBuffer(msg, ctx, &var2); framework::Scope scope; scope.Var("myvar"); operators::distributed::GRPCVariableResponse resp(&scope, &ctx); EXPECT_EQ(resp.Parse(msg), 0); framework::Variable* var2 = resp.GetVar(); auto* slr2 = var2->GetMutable(); auto* tensor2 = slr2->mutable_value(); auto* rows2 = slr2->mutable_rows(); float* tensor_data2 = nullptr; framework::Tensor tmp_tensor; if (platform::is_gpu_place(ctx.GetPlace())) { platform::CPUPlace cpu; framework::TensorCopy(*tensor2, cpu, &tmp_tensor); tensor_data2 = tmp_tensor.data(); } else { tensor_data2 = const_cast(tensor2->data()); } const int64_t* rows_data2 = rows2->data(); for (int i = 0; i < tensor_numel; ++i) { EXPECT_FLOAT_EQ(tensor_data2[i], 32.7); } for (size_t i = 0; i < rows2->size(); ++i) { EXPECT_EQ(rows_data2[i], static_cast(i)); } EXPECT_EQ(slr2->height(), 1000); } void RunTestLodTensor(platform::Place place, int from_type = 0) { // serialize var to ByteBuffer framework::Variable var; auto* tensor = var.GetMutable(); tensor->Resize(framework::make_ddim({512, 8, 4, 2})); framework::LoD lod; lod.push_back(framework::Vector({1, 3, 8})); tensor->set_lod(lod); int tensor_numel = 512 * 8 * 4 * 2; platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto& ctx = *pool.Get(place); tensor->mutable_data(place); math::set_constant(ctx, tensor, 31.9); ::grpc::ByteBuffer msg; operators::distributed::SerializeToByteBuffer("myvar", &var, ctx, &msg, "outvar", 0, "table_name"); EXPECT_GT(msg.Length(), static_cast(0)); // deserialize std::vector<::grpc::Slice> slices; (void)msg.Dump(&slices); std::string tmp; for (const auto& s : slices) { tmp.append(reinterpret_cast(s.begin()), s.size()); } sendrecv::VariableMessage varmsg; EXPECT_TRUE(varmsg.ParseFromString(tmp)); EXPECT_EQ(varmsg.varname(), "myvar"); EXPECT_EQ(varmsg.type(), 0); EXPECT_EQ(varmsg.dims()[0], 512); EXPECT_EQ(varmsg.dims()[1], 8); EXPECT_EQ(varmsg.dims()[2], 4); EXPECT_EQ(varmsg.dims()[3], 2); EXPECT_EQ(varmsg.lod_level(), 1); EXPECT_EQ(varmsg.lod(0).lod_data(0), 1); EXPECT_EQ(varmsg.lod(0).lod_data(1), 3); EXPECT_EQ(varmsg.lod(0).lod_data(2), 8); const float* tensor_data = reinterpret_cast(varmsg.serialized().data()); for (int i = 0; i < tensor_numel; ++i) { EXPECT_FLOAT_EQ(tensor_data[i], 31.9); } // message binary std::string str; varmsg.SerializeToString(&str); // message bytebuffer ::grpc::Slice slices_2[1]; int num_slices = 1; slices_2[0] = ::grpc::Slice(str.length()); memcpy(const_cast(slices_2[0].begin()), str.c_str(), str.length()); ::grpc::ByteBuffer bytebuffer2(&slices_2[0], num_slices); // deserialize zero-copy framework::Scope scope; scope.Var("myvar"); operators::distributed::GRPCVariableResponse resp(&scope, &ctx); if (from_type == 0) { EXPECT_EQ(resp.Parse(msg), 0); } else { EXPECT_EQ(resp.Parse(bytebuffer2), 0); } framework::Variable* var2 = resp.GetVar(); auto tensor2 = var2->Get(); float* tensor_data2 = nullptr; framework::Tensor tmp_tensor; if (platform::is_gpu_place(ctx.GetPlace())) { platform::CPUPlace cpu; framework::TensorCopy(tensor2, cpu, &tmp_tensor); tensor_data2 = tmp_tensor.data(); } else { tensor_data2 = const_cast(tensor2.data()); } EXPECT_EQ(varmsg.lod_level(), 1); EXPECT_EQ(varmsg.lod(0).lod_data(0), 1); EXPECT_EQ(varmsg.lod(0).lod_data(1), 3); EXPECT_EQ(varmsg.lod(0).lod_data(2), 8); for (int i = 0; i < tensor_numel; ++i) EXPECT_FLOAT_EQ(tensor_data2[i], 31.9); } TEST(LodTensor, Run) { platform::CPUPlace place; RunTestLodTensor(place); RunTestLodTensor(place, 1); #ifdef PADDLE_WITH_CUDA platform::CUDAPlace gpu(0); RunTestLodTensor(gpu); RunTestLodTensor(gpu, 1); #endif } TEST(SelectedRows, Run) { platform::CPUPlace place; RunSerdeTestSelectedRows(place); #ifdef PADDLE_WITH_CUDA platform::CUDAPlace gpu; RunSerdeTestSelectedRows(gpu); #endif }