/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/fleet/heter_ps/feature_value.h" #include "paddle/fluid/framework/fleet/heter_ps/heter_comm.h" #include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h" #include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh" #include "paddle/fluid/platform/cuda_device_guard.h" using namespace paddle::framework; TEST(TEST_FLEET, heter_comm) { int gpu_count = 3; std::vector dev_ids; dev_ids.push_back(0); dev_ids.push_back(1); dev_ids.push_back(2); std::shared_ptr resource = std::make_shared(dev_ids); resource->enable_p2p(); std::vector count; std::vector> keys; std::vector> vals; count.resize(dev_ids.size(), 0); keys.resize(dev_ids.size()); vals.resize(dev_ids.size()); for (int i = 0; i < 10; i++) { FeatureKey key; FeatureValue val; int gpu_num = i % gpu_count; key = i; val.lr = i; val.lr_g2sum = val.mf_size = val.show = val.clk = val.slot = 0; keys[gpu_num].push_back(key); vals[gpu_num].push_back(val); count[gpu_num] += 1; } size_t size = 0; for (size_t i = 0; i < count.size(); ++i) { size = std::max(size, count[i]); } auto heter_comm = std::make_shared>( size, resource); for (int i = 0; i < gpu_count; ++i) { std::cout << "building table: " << i << std::endl; heter_comm->build_ps(i, keys[i].data(), vals[i].data(), count[i], 10, 1); heter_comm->show_one_table(i); } std::cout << "testing pull sparse:" << std::endl; paddle::platform::CUDADeviceGuard guard(0); FeatureKey* pull_keys; FeatureValue* pull_vals; cudaMallocManaged(&pull_keys, 5 * sizeof(FeatureKey)); cudaMallocManaged(&pull_vals, 5 * sizeof(FeatureValue)); pull_keys[0] = 2; pull_keys[1] = 3; pull_keys[2] = 9; pull_keys[3] = 1; pull_keys[4] = 6; heter_comm->pull_sparse(0, pull_keys, pull_vals, 5); for (int i = 0; i < 5; i++) { std::cout << pull_keys[i] << ": " << pull_vals[i] << std::endl; } cudaFree(pull_keys); cudaFree(pull_vals); std::cout << "testing push sparse:" << std::endl; Optimizer opt; FeatureKey* push_keys; FeaturePushValue* push_vals; cudaMallocManaged(&push_keys, 5 * sizeof(FeatureKey)); cudaMallocManaged(&push_vals, 5 * sizeof(FeaturePushValue)); push_keys[0] = 2; push_keys[1] = 3; push_keys[2] = 9; push_keys[3] = 1; push_keys[4] = 3; for (int i = 0; i < 5; ++i) { push_vals[i].lr_g = push_keys[i] * 100; push_vals[i].slot = push_keys[i]; push_vals[i].show = push_keys[i]; push_vals[i].clk = push_keys[i]; } heter_comm->push_sparse(0, push_keys, push_vals, 5, opt); for (int i = 0; i < gpu_count; ++i) { std::cout << "table " << i << ";" << std::endl; heter_comm->show_one_table(i); } cudaFree(push_keys); cudaFree(push_vals); }