# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core from paddle import rand import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard import paddle class TestRandOpError(unittest.TestCase): """ This class test the input type check. """ def test_errors(self): main_prog = Program() start_prog = Program() with program_guard(main_prog, start_prog): def test_Variable(): x1 = fluid.create_lod_tensor( np.zeros((4, 784)), [[1, 1, 1, 1]], fluid.CPUPlace()) rand(x1) self.assertRaises(TypeError, test_Variable) def test_dtype(): dim_1 = fluid.layers.fill_constant([1], "int64", 3) dim_2 = fluid.layers.fill_constant([1], "int32", 5) rand(shape=[dim_1, dim_2], dtype='int32') self.assertRaises(TypeError, test_dtype) class TestRandOp(unittest.TestCase): """ This class test the common usages of randop. """ def run_net(self, use_cuda=False): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): result_0 = rand([3, 4]) result_1 = rand([3, 4], 'float64') dim_1 = fluid.layers.fill_constant([1], "int64", 3) dim_2 = fluid.layers.fill_constant([1], "int32", 5) result_2 = rand(shape=[dim_1, dim_2]) var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") result_3 = rand(var_shape) var_shape_int32 = fluid.data( name='var_shape_int32', shape=[2], dtype="int32") result_4 = rand(var_shape_int32) exe.run(startup_program) x1 = np.array([3, 2]).astype('int64') x2 = np.array([4, 3]).astype('int32') ret = exe.run( train_program, feed={"var_shape": x1, "var_shape_int32": x2}, fetch_list=[result_1, result_1, result_2, result_3, result_4]) def test_run(self): self.run_net(False) if core.is_compiled_with_cuda(): self.run_net(True) class TestRandOpForDygraph(unittest.TestCase): """ This class test the common usages of randop. """ def run_net(self, use_cuda=False): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() with fluid.dygraph.guard(place): rand([3, 4]) rand([3, 4], 'float64') dim_1 = fluid.layers.fill_constant([1], "int64", 3) dim_2 = fluid.layers.fill_constant([1], "int32", 5) rand(shape=[dim_1, dim_2]) var_shape = fluid.dygraph.to_variable(np.array([3, 4])) rand(var_shape) def test_run(self): self.run_net(False) if core.is_compiled_with_cuda(): self.run_net(True) class TestRandDtype(unittest.TestCase): def test_default_dtype(self): paddle.disable_static() def test_default_fp16(): paddle.framework.set_default_dtype('float16') paddle.tensor.random.rand([2, 3]) self.assertRaises(TypeError, test_default_fp16) def test_default_fp32(): paddle.framework.set_default_dtype('float32') out = paddle.tensor.random.rand([2, 3]) self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP32) def test_default_fp64(): paddle.framework.set_default_dtype('float64') out = paddle.tensor.random.rand([2, 3]) self.assertEqual(out.dtype, fluid.core.VarDesc.VarType.FP64) test_default_fp64() test_default_fp32() paddle.enable_static() if __name__ == "__main__": unittest.main()