# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.fluid as fluid paddle.enable_static() class TestXPUElementwiseOpBase(object): def setUp(self, op_type): self.op_type = op_type self.attrs = {'use_xpu': True} self.is_common_broadcast = False self.is_x_size_less_than_y = False self.grad_implemented = False self.y_grad_implemented = True self.dtype = np.float32 self.__class__.op_type = self.op_type self.__class__.use_xpu = True self.__class__.dtype = self.dtype def net(self, place): with fluid.program_guard(fluid.Program(), fluid.Program()): x = fluid.layers.data( name='X', shape=self.inputs['X'].shape, dtype=self.dtype) y = fluid.layers.data( name='Y', shape=self.inputs['Y'].shape, dtype=self.dtype) op = getattr(fluid.layers, self.op_type) z = op(x, y) exe = fluid.Executor(place) z_value = exe.run(feed=self.inputs, fetch_list=[z.name]) def test_check_output(self): if paddle.is_compiled_with_xpu(): place = paddle.XPUPlace(0) if not self.is_common_broadcast and not self.is_x_size_less_than_y: self.check_output_with_place(place, atol=1e-3) else: with self.assertRaises(BaseException): self.net(place) def _check_grad_xpu_helper(self, inputs_to_check, output_names, no_grad_set=None, max_relative_error=0.01): if self.grad_implemented and not self.is_common_broadcast \ and not self.is_x_size_less_than_y: if paddle.is_compiled_with_xpu(): place = paddle.XPUPlace(0) self.check_grad_with_place( place, inputs_to_check, output_names, no_grad_set=no_grad_set, max_relative_error=max_relative_error) def test_check_grad_normal(self): self._check_grad_xpu_helper(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): self._check_grad_xpu_helper(['Y'], 'Out', set("X")) def test_check_grad_ingore_y(self): if self.y_grad_implemented: self._check_grad_xpu_helper(['X'], 'Out', set("Y")) def init_axis(self): self.axis = -1 def make_input(self, x_shape=[13, 17], y_shape=[13, 17]): self.inputs = { 'X': np.random.uniform(0.1, 1, x_shape).astype(self.dtype), 'Y': np.random.uniform(0.1, 1, y_shape).astype(self.dtype) } def reshape_input(self, x_shape=None, y_shape=None): if x_shape is None: x = self.inputs['X'] else: x = self.inputs['X'].reshape(x_shape) if y_shape is None: y = self.inputs['Y'] else: y = self.inputs['Y'].reshape(y_shape) return x, y def make_output(self, x_shape=None, y_shape=None): pass