/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/operators/data_norm_op.h" #include "paddle/fluid/platform/cuda_primitives.h" #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #include "paddle/fluid/platform/collective_helper.h" #include "paddle/fluid/platform/nccl_helper.h" #endif namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; using DataLayout = framework::DataLayout; using platform::PADDLE_CUDA_NUM_THREADS; #define CUDA_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ i += blockDim.x * gridDim.x) inline int GET_BLOCKS(const int N) { return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS; } template __global__ void KernelDataNormFF(int N, int C, const T *x, T *y, const T *mean, const T *scale) { CUDA_KERNEL_LOOP(i, N * C) { int col = i % C; y[i] = (x[i] - mean[col]) * scale[col]; } } template __global__ void KernelMeanScale(int C, const T *batch_size, const T *batch_sum, const T *batch_square_sum, T *mean, T *scale) { CUDA_KERNEL_LOOP(i, C) { mean[i] = batch_sum[i] / batch_size[i]; scale[i] = sqrt(batch_size[i] / batch_square_sum[i]); } } template __global__ void KernelDataNormBP(int N, int C, const T *y_grad, const T *scale, T *x_grad) { CUDA_KERNEL_LOOP(i, N * C) { x_grad[i] = y_grad[i] * scale[i % C]; } } template __global__ void KernelDataNormBPStat(int N, int C, const T *x_val, const T *means, const float squared_sum_epsilon, T *batch_size, T *batch_sum, T *batch_square_sum) { CUDA_KERNEL_LOOP(i, C) { T val_sum = 0; T square_sum = 0; for (int j = 0; j < N; j++) { val_sum += x_val[j * C + i]; square_sum += (x_val[j * C + i] - means[i]) * (x_val[j * C + i] - means[i]); } batch_size[i] = 1; batch_sum[i] = val_sum / N; batch_square_sum[i] = square_sum / N + squared_sum_epsilon; } } template __global__ void KernelUpdateParam(int C, const T *d_batch_size, const T *d_batch_sum, const T *d_batch_square_sum, T *batch_size, T *batch_sum, T *batch_square_sum, const float decay_rate) { CUDA_KERNEL_LOOP(i, C) { batch_size[i] = batch_size[i] * decay_rate + d_batch_size[i]; batch_sum[i] = batch_sum[i] * decay_rate + d_batch_sum[i]; batch_square_sum[i] = batch_square_sum[i] * decay_rate + d_batch_square_sum[i]; } } template class DataNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *x = ctx.Input("X"); const auto &x_dims = x->dims(); // Align with CPU version, but should we add this restriction? PADDLE_ENFORCE_EQ(x_dims.size(), 2, platform::errors::PreconditionNotMet( "The Input dim size should be 2")); const int N = x_dims[0]; const int C = x_dims[1]; const T *batch_size_in = ctx.Input("BatchSize")->data(); const T *batch_sum_in = ctx.Input("BatchSum")->data(); const T *batch_square_sum_in = ctx.Input("BatchSquareSum")->data(); auto *x_data = x->data(); // alloc memory T *y_data = ctx.Output("Y")->mutable_data(ctx.GetPlace()); T *mean_out_data = ctx.Output("Means")->mutable_data(ctx.GetPlace()); T *scale_out_data = ctx.Output("Scales")->mutable_data(ctx.GetPlace()); auto stream = ctx.template device_context().stream(); KernelMeanScale<<>>( C, batch_size_in, batch_sum_in, batch_square_sum_in, mean_out_data, scale_out_data); KernelDataNormFF<<>>( N, C, x_data, y_data, mean_out_data, scale_out_data); } }; template class DataNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *x = ctx.Input("X"); const auto *d_y = ctx.Input(framework::GradVarName("Y")); const auto *scales = ctx.Input("Scales"); const auto *means = ctx.Input("Means"); const float epsilon = ctx.Attr("epsilon"); const float dr = ctx.Attr("summary_decay_rate"); const bool need_sync_stats = ctx.Attr("sync_stats"); const auto &x_dims = x->dims(); // Align with CPU version, but should we add this restriction? PADDLE_ENFORCE_EQ(x_dims.size(), 2, platform::errors::PreconditionNotMet( "The Input dim size should be 2")); const int N = x_dims[0]; const int C = x_dims[1]; // init output Tensor *d_x = nullptr; if (ctx.HasOutput(framework::GradVarName("X"))) { d_x = ctx.Output(framework::GradVarName("X")); } T *d_batch_size = ctx.Output(framework::GradVarName("BatchSize")) ->mutable_data(ctx.GetPlace()); T *d_batch_sum = ctx.Output(framework::GradVarName("BatchSum")) ->mutable_data(ctx.GetPlace()); T *d_batch_square_sum = ctx.Output(framework::GradVarName("BatchSquareSum")) ->mutable_data(ctx.GetPlace()); auto stream = ctx.template device_context().stream(); if (d_x != nullptr) { KernelDataNormBP<<>>(N, C, d_y->data(), scales->data(), d_x->mutable_data(ctx.GetPlace())); } KernelDataNormBPStat<<>>( N, C, x->data(), means->data(), epsilon, d_batch_size, d_batch_sum, d_batch_square_sum); if (need_sync_stats) { #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) auto comm = platform::NCCLCommContext::Instance().Get(0, ctx.GetPlace()); PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce( reinterpret_cast(d_batch_size), reinterpret_cast(d_batch_size), C, platform::ToNCCLDataType(x->type()), ncclSum, comm->comm(), stream)); PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce( reinterpret_cast(d_batch_sum), reinterpret_cast(d_batch_sum), C, platform::ToNCCLDataType(x->type()), ncclSum, comm->comm(), stream)); PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce( reinterpret_cast(d_batch_square_sum), reinterpret_cast(d_batch_square_sum), C, platform::ToNCCLDataType(x->type()), ncclSum, comm->comm(), stream)); cudaError_t e_sync = cudaStreamSynchronize(stream); if (e_sync != 0) { LOG(FATAL) << "Fail to sync nccl stream: " << cudaGetErrorString(e_sync); } #else PADDLE_THROW(platform::errors::PreconditionNotMet( "PaddlePaddle should compile with GPU, and need_sync_stats connot be " "supported on windows now.")); #endif } T *batch_size_data = ctx.Output("BatchSize")->mutable_data(ctx.GetPlace()); T *batch_sum_data = ctx.Output("BatchSum")->mutable_data(ctx.GetPlace()); T *batch_square_sum_data = ctx.Output("BatchSquareSum")->mutable_data(ctx.GetPlace()); KernelUpdateParam<<>>( C, d_batch_size, d_batch_sum, d_batch_square_sum, batch_size_data, batch_sum_data, batch_square_sum_data, dr); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( data_norm, ops::DataNormKernel, ops::DataNormKernel); REGISTER_OP_CUDA_KERNEL( data_norm_grad, ops::DataNormGradKernel, ops::DataNormGradKernel);