# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, randomize_probability class TestBprLossOp1(OpTest): """Test BprLoss with discrete one-hot labels. """ def setUp(self): self.op_type = "bpr_loss" batch_size = 40 class_num = 5 X = randomize_probability(batch_size, class_num, dtype='float64') label_pos = np.random.randint( 0, class_num, (batch_size, 1), dtype="int64") bpr_loss_result = [] for i in range(batch_size): sum = 0.0 for j in range(class_num): if j == label_pos[i][0]: continue sum += (-np.log(1.0 + np.exp(X[i][j] - X[i][label_pos[i][0]]))) bpr_loss_result.append(-sum / (class_num - 1)) bpr_loss = np.asmatrix([[x] for x in bpr_loss_result], dtype="float64") self.inputs = {"X": X, "LabelPos": label_pos} self.outputs = {"Y": bpr_loss} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Y", numeric_grad_delta=0.001) if __name__ == "__main__": unittest.main()