/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include "mkldnn.hpp" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/place.h" namespace paddle { #ifdef PADDLE_WITH_MKLDNN using MKLDNNMemoryFormat = mkldnn::memory::format_tag; #endif namespace platform { using MKLDNNStream = mkldnn::stream; using MKLDNNEngine = mkldnn::engine; using MKLDNNMemory = mkldnn::memory; using MKLDNNMemoryDescriptor = mkldnn::memory::desc; using MKLDNNPrimitive = mkldnn::primitive; using MKLDNNPrimitiveDesc = mkldnn::handle; typedef std::unique_ptr MKLDNNStreamPtr; typedef std::unique_ptr MKLDNNEnginePtr; typedef std::unique_ptr MKLDNNMemoryPtr; typedef std::unique_ptr MKLDNNPrimitivePtr; typedef std::unique_ptr MKLDNNPrimitiveDescPtr; template void* to_void_cast(const Type* t) { return static_cast(const_cast(t)); } template void* to_void_reinterpret_cast(const Type* t) { return reinterpret_cast(const_cast(t)); } template using tf_desc = typename Type::desc; template using tf_pd = typename Type::primitive_desc; template std::shared_ptr> MKLDNNFwdPrimitiveDesc(const Engine& e, Args&&... args) { auto desc = tf_desc(mkldnn::prop_kind::forward, (args)...); auto pd = new tf_pd(desc, e); return std::shared_ptr>(pd); } template tf_pd MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p, Args&&... args) { auto desc = tf_desc(args...); return tf_pd(desc, e, p); } inline void MatchShapeToLayout(framework::Tensor* tensor_in, framework::DataLayout from, framework::DataLayout to) { // In these data layouts, channel dimension is either on 2nd position: nChw or // at last nhwC, so for dim==2 these layouts are the same and nothing should // be done. Similarly for dim==1 when you have just one possible combination. if (tensor_in->dims().size() < 3) { return; } switch (from) { case framework::DataLayout::kMKLDNN: if (to == framework::DataLayout::kNHWC) { auto dims = framework::vectorize(tensor_in->dims()); std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end()); tensor_in->Resize(framework::make_ddim(dims)); } break; case framework::DataLayout::kNHWC: if (to == framework::DataLayout::kMKLDNN) { auto dims = framework::vectorize(tensor_in->dims()); std::rotate(dims.begin() + 1, dims.end() - 1, dims.end()); tensor_in->Resize(framework::make_ddim(dims)); } break; default: break; } } inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector& dims, mkldnn::memory::data_type data_type, MKLDNNMemoryFormat format) { return mkldnn::memory::desc({dims}, data_type, format); } inline bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx) { bool use_mkldnn = ctx.Attr("use_mkldnn"); return use_mkldnn && platform::is_cpu_place(ctx.GetPlace()); } template mkldnn::memory::data_type MKLDNNGetDataType() { return mkldnn::memory::data_type::undef; } template <> inline mkldnn::memory::data_type MKLDNNGetDataType() { return mkldnn::memory::data_type::f32; } template <> inline mkldnn::memory::data_type MKLDNNGetDataType() { return mkldnn::memory::data_type::s32; } template <> inline mkldnn::memory::data_type MKLDNNGetDataType() { return mkldnn::memory::data_type::s8; } template <> inline mkldnn::memory::data_type MKLDNNGetDataType() { return mkldnn::memory::data_type::u8; } inline void Reorder(mkldnn::memory src, mkldnn::memory dst, const mkldnn::engine& engine) { auto reorder_prim = mkldnn::reorder(src, dst); mkldnn::stream astream(engine); reorder_prim.execute(astream, src, dst); astream.wait(); } inline mkldnn::memory::format_tag GetMKLDNNFormat( mkldnn::memory::desc mem_desc) { auto ndims = mem_desc.data.ndims; auto strides = mem_desc.data.format_desc.blocking.strides; auto inner_nblks = mem_desc.data.format_desc.blocking.inner_nblks; auto inner_blks = mem_desc.data.format_desc.blocking.inner_blks; auto inner_idxs = mem_desc.data.format_desc.blocking.inner_idxs; if (ndims == 1) { return mkldnn::memory::format_tag::x; } else if (ndims == 2) { if (inner_nblks == 0) { if (strides[0] >= strides[1]) { return mkldnn::memory::format_tag::nc; } else { return mkldnn::memory::format_tag::cn; } } } else if (ndims == 3) { if (inner_nblks == 0) { if (strides[0] >= strides[1] && strides[1] >= strides[2]) { return mkldnn::memory::format_tag::ncw; } else { return mkldnn::memory::format_tag::nwc; } } } else if (ndims == 4) { if (inner_nblks == 0) { if (strides[0] >= strides[1] && strides[1] >= strides[2] && strides[2] >= strides[3]) { return mkldnn::memory::format_tag::nchw; } else { return mkldnn::memory::format_tag::nhwc; } } else if (inner_nblks == 1) { if (inner_blks[0] == 16 && inner_idxs[0] == 1) { return mkldnn::memory::format_tag::nChw16c; } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) { return mkldnn::memory::format_tag::nChw8c; } else if (inner_blks[0] == 8 && inner_idxs[0] == 0) { if (strides[0] >= strides[2] && strides[2] >= strides[3] && strides[3] >= strides[1]) { return mkldnn::memory::format_tag::Acdb8a; } } else if (inner_blks[0] == 4 && inner_idxs[0] == 1) { return mkldnn::memory::format_tag::nChw4c; } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) { if (strides[0] >= strides[2] && strides[2] >= strides[3] && strides[3] >= strides[1]) { return mkldnn::memory::format_tag::Acdb16a; } } } else if (inner_nblks == 2) { if (inner_blks[0] == 16 && inner_blks[1] == 16) { if (inner_idxs[0] == 1 && inner_idxs[1] == 0) { return mkldnn::memory::format_tag::OIhw16i16o; } } else if (inner_blks[0] == 8 && inner_blks[1] == 8) { if (inner_idxs[0] == 1 && inner_idxs[1] == 0) { return mkldnn::memory::format_tag::OIhw8i8o; } } } } else if (ndims == 5) { if (inner_nblks == 0) { if (strides[0] >= strides[1] && strides[1] >= strides[2] && strides[2] >= strides[3] && strides[3] >= strides[4]) { return mkldnn::memory::format_tag::ncdhw; } else { return mkldnn::memory::format_tag::ndhwc; } } else if (inner_nblks == 1) { if (inner_blks[0] == 8 && inner_idxs[0] == 0) { if (strides[0] >= strides[2] && strides[2] >= strides[3] && strides[3] >= strides[4] && strides[4] >= strides[1]) { return mkldnn::memory::format_tag::Acdeb8a; } } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) { if (strides[0] >= strides[1] && strides[1] >= strides[2] && strides[2] >= strides[3] && strides[3] >= strides[4]) { return mkldnn::memory::format_tag::aBcde8b; } } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) { if (strides[0] >= strides[2] && strides[2] >= strides[3] && strides[3] >= strides[4] && strides[4] >= strides[1]) { return mkldnn::memory::format_tag::Acdeb16a; } } else if (inner_blks[0] == 16 && inner_idxs[0] == 1) { if (strides[0] >= strides[1] && strides[1] >= strides[2] && strides[2] >= strides[3] && strides[3] >= strides[4]) { return mkldnn::memory::format_tag::aBcde16b; } } } } else if (ndims == 6) { if (inner_nblks == 0) { if (strides[0] >= strides[1] && strides[1] >= strides[2] && strides[2] >= strides[3] && strides[3] >= strides[4] && strides[4] >= strides[5]) { return mkldnn::memory::format_tag::abcdef; } } } // DEBUG CODE - KEEP UNTILL TENSOR.MEMORY_DESC IMPLEMENTED // std::cout<<"@@@@@@@@@@ UNDEFINED FORMAT @@@@@@@@@@@@@@@@@@@"<begin(), format->end(), format->begin(), ::tolower); if (!format->compare("nchw")) { return MKLDNNMemoryFormat::nchw; } else if (!format->compare("nchw16c")) { return MKLDNNMemoryFormat::nChw16c; } else if (!format->compare("nchw8c")) { return MKLDNNMemoryFormat::nChw8c; } else if (!format->compare("nhwc")) { return MKLDNNMemoryFormat::nhwc; } else { return MKLDNNMemoryFormat::any; } } inline std::string ThreadIDasStr(void) { return std::to_string( std::hash()(std::this_thread::get_id())); } template inline void AppendKey(std::string* key, const T& num) { key->append(std::to_string(num)); } template <> inline void AppendKey(std::string* key, const mkldnn::memory::format_tag& format) { key->append(std::to_string(static_cast(format))); } template <> inline void AppendKey(std::string* key, const mkldnn::memory::data_type& data_type) { key->append(std::to_string(static_cast(data_type))); } template <> inline void AppendKey(std::string* key, const mkldnn::algorithm& algorithm) { key->append(std::to_string(static_cast(algorithm))); } template <> inline void AppendKey(std::string* key, const mkldnn::normalization_flags& flags) { key->append(std::to_string(static_cast(flags))); } inline void AppendKey(std::string* key, const std::string& str) { key->append(str); } inline void AppendKey(std::string* key, const char* str) { key->append(str); } template inline void AppendKey(std::string* key, const std::vector& dims) { for (size_t i = 0; i < dims.size(); i++) { AppendKey(key, std::to_string(dims[i])); } } template inline std::string CreateKey(ArgTypes&&... args) { std::string key; key.reserve(64); using expand_type = int[]; expand_type{0, (AppendKey(&key, std::forward(args)), 0)...}; return key; } inline std::vector> ToMkldnnPadding( const std::vector& paddings) { if (paddings.size() == 6) { int padding_front = paddings[0]; int padding_back = paddings[1]; int padding_top = paddings[2]; int padding_bottom = paddings[3]; int padding_left = paddings[4]; int padding_right = paddings[5]; return {{padding_front, padding_top, padding_left}, {padding_back, padding_bottom, padding_right}}; } else { int padding_top = paddings[0]; int padding_bottom = paddings[1]; int padding_left = paddings[2]; int padding_right = paddings[3]; return {{padding_top, padding_left}, {padding_bottom, padding_right}}; } } } // namespace platform } // namespace paddle