import io, os import random import numpy as np from paddle.trainer.PyDataProvider2 import * def initHook(settings, height, width, color, num_class, **kwargs): settings.height = height settings.width = width settings.color = color settings.num_class = num_class if settings.color: settings.data_size = settings.height * settings.width * 3 else: settings.data_size = settings.height * settings.width settings.is_infer = kwargs.get('is_infer', False) if settings.is_infer: settings.slots = [dense_vector(settings.data_size)] else: settings.slots = [dense_vector(settings.data_size), integer_value(1)] @provider( init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM) def process(settings, file_list): for i in xrange(1024): img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten() if settings.is_infer: yield img.astype('float32') else: lab = random.randint(0, settings.num_class - 1) yield img.astype('float32'), int(lab)