# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid.core as core from paddle.fluid.op import Operator import paddle.fluid as fluid class TestDGCMomentumOp1(unittest.TestCase): def get_tensor(self, name, value, place=None): tensor = self.scope.var(name).get_tensor() tensor.set(value, self.place if place is None else place) return name, tensor def setup(self, place, step=0.0): self.scope = fluid.global_scope() self.place = place print("place:", place) self.op_type = "dgc_momentum" self.dtype = np.float32 param = np.random.random((123, 321)).astype(self.dtype) grad = np.random.random((123, 321)).astype(self.dtype) velocity = np.zeros((123, 321)).astype(self.dtype) learning_rate = np.array([0.001]).astype(self.dtype) current_step = np.full((1), step).astype("float32") mu = 0.0001 use_nesterov = False rampup_begin_step = 10.0 self.param_name, self.param_tensor = self.get_tensor('Param', param) self.grad_name, self.grad_tensor = self.get_tensor('Grad', grad) self.velocity_name, self.velocity_tensor = self.get_tensor('Velocity', velocity) self.learning_rate_name, self.learning_rate_tensor = self.get_tensor( 'LearningRate', learning_rate) self.current_step_name, self.current_step_tensor = self.get_tensor( 'current_step', current_step, core.CPUPlace()) self.kwargs = { # inputs 'Param': self.param_name, 'Grad': self.grad_name, 'Velocity': self.velocity_name, 'LearningRate': self.learning_rate_name, 'current_step': self.current_step_name, # attrs 'mu': mu, 'use_nesterov': use_nesterov, 'rampup_begin_step': rampup_begin_step, # outputs 'ParamOut': self.param_name, 'VelocityOut': self.velocity_name } velocity_out = mu * velocity + grad if use_nesterov: param_out = param - grad * learning_rate - \ velocity_out * mu * learning_rate else: param_out = param - learning_rate * velocity_out sgd_out = param - learning_rate * grad self.outputs = { 'ParamOut': param_out, 'VelocityOut': velocity_out, 'SGDOut': sgd_out } def check(self, actual_t, expect_t, place, out_name, atol=1e-5): self.assertTrue( np.allclose( actual_t, expect_t, atol=atol), "Output (" + out_name + ") has diff at " + str(place) + "\nExpect " + str(expect_t) + "\n" + "But Got" + str(actual_t)) def check_momentum_step(self, place): self.setup(place=place) dgc_momentum_op = Operator(self.op_type, **self.kwargs) dgc_momentum_op.run(self.scope, self.place) self.check( np.array(self.param_tensor), self.outputs['ParamOut'], self.place, self.param_name) self.check( np.array(self.velocity_tensor), self.outputs['VelocityOut'], self.place, self.velocity_name) def check_sgd_step(self, place): self.setup(place=place, step=15.0) dgc_momentum_op = Operator(self.op_type, **self.kwargs) dgc_momentum_op.run(self.scope, self.place) self.check( np.array(self.param_tensor), self.outputs['SGDOut'], self.place, self.param_name) def test_cuda_place(self): if not core.is_compiled_with_cuda(): return place = core.CUDAPlace(0) self.check_momentum_step(place) self.check_sgd_step(place) def test_cpu_place(self): place = core.CPUPlace() self.check_momentum_step(place) self.check_sgd_step(place) if __name__ == "__main__": unittest.main()