# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid.core as core def func_ref(func, x, num_or_sections): # Convert the num_or_sections in paddle to indices_or_sections in numpy # Do not support -1 if isinstance(num_or_sections, int): indices_or_sections = num_or_sections else: indices_or_sections = np.cumsum(num_or_sections)[:-1] return func(x, indices_or_sections) # TODO: add other split API, such as dsplit、hsplit test_list = [ (paddle.vsplit, np.vsplit), ] class TestSplitsAPI(unittest.TestCase): def setUp(self): self.rtol = 1e-5 self.atol = 1e-8 self.set_input() def set_input(self): self.shape = [4, 5, 2] self.num_or_sections = 2 self.x_np = np.random.uniform(-1, 1, self.shape).astype('float64') self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ else paddle.CPUPlace() def test_static_api(self): paddle.enable_static() for func, func_type in test_list: with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype) out = func(x, self.num_or_sections) exe = paddle.static.Executor(self.place) res = exe.run(feed={'X': self.x_np}, fetch_list=[out]) out_ref = func_ref(func_type, self.x_np, self.num_or_sections) for n, p in zip(out_ref, res): np.testing.assert_allclose(n, p, rtol=self.rtol, atol=self.atol) def test_dygraph_api(self): paddle.disable_static(self.place) x = paddle.to_tensor(self.x_np) for func, func_type in test_list: out = func(x, self.num_or_sections) out_ref = func_ref(func_type, self.x_np, self.num_or_sections) for n, p in zip(out_ref, out): np.testing.assert_allclose(n, p.numpy(), rtol=self.rtol, atol=self.atol) paddle.enable_static() class TestSplitsSections(TestSplitsAPI): """ Test num_or_sections which is a list and date type is float64. """ def set_input(self): self.shape = [6, 2, 4] self.num_or_sections = [2, 1, 3] self.x_np = np.random.uniform(-1, 1, self.shape).astype('float64') self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ else paddle.CPUPlace() class TestSplitsFloat32(TestSplitsAPI): """ Test num_or_sections which is an integer and data type is float32. """ def set_input(self): self.shape = [2, 3, 4] self.num_or_sections = 2 self.x_np = np.random.uniform(-1, 1, self.shape).astype('float32') self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ else paddle.CPUPlace() class TestSplitsInt32(TestSplitsAPI): """ Test data type int32. """ def set_input(self): self.shape = [5, 1, 2] self.num_or_sections = 5 self.x_np = np.random.uniform(-1, 1, self.shape).astype('int32') self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ else paddle.CPUPlace() class TestSplitsInt64(TestSplitsAPI): """ Test data type int64. """ def set_input(self): self.shape = [4, 3, 2] self.num_or_sections = 2 self.x_np = np.random.uniform(-1, 1, self.shape).astype('int64') self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ else paddle.CPUPlace() class TestSplitsCPU(TestSplitsAPI): """ Test cpu place and num_or_sections which is a tuple. """ def set_input(self): self.shape = [8, 2, 3, 5] self.num_or_sections = (2, 3, 3) self.x_np = np.random.uniform(-1, 1, self.shape).astype('float64') self.place = paddle.CPUPlace() class TestSplitsError(unittest.TestCase): """ Test the situation that input shape less than 2. """ def setUp(self): self.num_or_sections = 1 self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ else paddle.CPUPlace() def test_static_error(self): paddle.enable_static() for func, _ in test_list: with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', [5], 'float32') self.assertRaises(ValueError, func, x, self.num_or_sections) def test_dygraph_error(self): paddle.disable_static(self.place) for func, _ in test_list: x_np = np.random.randn(2) x = paddle.to_tensor(x_np, dtype='float64') self.assertRaises(ValueError, func, x, self.num_or_sections) if __name__ == '__main__': unittest.main()