# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import contextlib import numpy as np import random import paddle import paddle.fluid.core as core import paddle.fluid as fluid def bow_net(data, label, dict_dim, is_sparse=False, emb_dim=8, hid_dim=8, hid_dim2=6, class_dim=2): """ BOW net This model is from https://github.com/PaddlePaddle/models: fluid/PaddleNLP/text_classification/nets.py """ emb = fluid.layers.embedding(input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim]) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bow_tanh = fluid.layers.tanh(bow) fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") cost = fluid.layers.cross_entropy(input=prediction, label=label) avg_cost = paddle.mean(x=cost) return avg_cost class TestRegularizer(unittest.TestCase): def setUp(self): self.word_len = 1500 self.train_data = [[(random.sample(range(1000), 10), [0])] for _ in range(2)] def get_places(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) return places @contextlib.contextmanager def scope_prog_guard(self, main_prog, startup_prog): scope = fluid.core.Scope() with fluid.unique_name.guard(): with fluid.scope_guard(scope): with fluid.program_guard(main_prog, startup_prog): yield def run_program(self, place, feed_list): exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=feed_list, place=place) exe.run(fluid.default_startup_program()) main_prog = fluid.default_main_program() param_list = [var.name for var in main_prog.block(0).all_parameters()] param_sum = [] for data in self.train_data: out = exe.run(main_prog, feed=feeder.feed(data), fetch_list=param_list) p_sum = 0 for v in out: p_sum += np.sum(np.abs(v)) param_sum.append(p_sum) return param_sum def check_l2decay_regularizer(self, place, model): paddle.seed(1) paddle.framework.random._manual_program_seed(1) main_prog = fluid.framework.Program() startup_prog = fluid.framework.Program() with self.scope_prog_guard(main_prog=main_prog, startup_prog=startup_prog): data = fluid.layers.data(name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") avg_cost = model(data, label, self.word_len) optimizer = fluid.optimizer.Adagrad( learning_rate=0.1, regularization=paddle.regularizer.L2Decay(1.0)) optimizer.minimize(avg_cost) param_sum = self.run_program(place, [data, label]) return param_sum def check_l2decay(self, place, model): paddle.seed(1) paddle.framework.random._manual_program_seed(1) main_prog = fluid.framework.Program() startup_prog = fluid.framework.Program() with self.scope_prog_guard(main_prog=main_prog, startup_prog=startup_prog): data = fluid.layers.data(name="words", shape=[1], dtype="int64", lod_level=1) label = fluid.layers.data(name="label", shape=[1], dtype="int64") avg_cost_l2 = model(data, label, self.word_len) param_list = fluid.default_main_program().block(0).all_parameters() para_sum = [] for para in param_list: para_mul = fluid.layers.square(x=para) para_sum.append(fluid.layers.reduce_sum(input=para_mul)) avg_cost_l2 += fluid.layers.sums(para_sum) * .5 optimizer = fluid.optimizer.Adagrad(learning_rate=0.1) optimizer.minimize(avg_cost_l2) param_sum = self.run_program(place, [data, label]) return param_sum def test_l2(self): paddle.enable_static() for place in self.get_places(): dense_sparse_p_sum = [] for sparse in [True, False]: model = partial(bow_net, is_sparse=sparse) framework_l2 = self.check_l2decay_regularizer(place, model) l2 = self.check_l2decay(place, model) assert len(l2) == len(framework_l2) for i in range(len(l2)): assert np.isclose(a=framework_l2[i], b=l2[i], rtol=5e-5) dense_sparse_p_sum.append(framework_l2) assert len(dense_sparse_p_sum[0]) == len(dense_sparse_p_sum[1]) for i in range(len(dense_sparse_p_sum[0])): assert np.isclose(a=dense_sparse_p_sum[0][i], b=dense_sparse_p_sum[1][i], rtol=5e-5) def test_repeated_regularization(self): paddle.enable_static() l1 = paddle.regularizer.L1Decay(0.1) l2 = paddle.regularizer.L2Decay(0.01) fc_param_attr = fluid.ParamAttr(regularizer=l1) with fluid.program_guard(fluid.Program(), fluid.Program()): x = fluid.layers.uniform_random([2, 2, 3]) out = fluid.layers.fc(x, 5, param_attr=fc_param_attr) loss = fluid.layers.reduce_sum(out) sgd = fluid.optimizer.SGD(learning_rate=0.1, regularization=l2) sgd.minimize(loss) with fluid.dygraph.guard(): input = fluid.dygraph.to_variable( np.random.randn(3, 2).astype('float32')) paddle.seed(1) paddle.framework.random._manual_program_seed(1) linear1 = fluid.dygraph.Linear(2, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr) linear2 = fluid.dygraph.Linear(2, 2, param_attr=fc_param_attr, bias_attr=fc_param_attr) loss1 = linear1(input) loss1.backward() # set l2 regularizer in optimizer, but l1 in fluid.ParamAttr fluid.optimizer.SGD(parameter_list=linear1.parameters(), learning_rate=1e-2, regularization=l2).minimize(loss1) # only set l1 in fluid.ParamAttr loss2 = linear2(input) loss2.backward() fluid.optimizer.SGD(parameter_list=linear2.parameters(), learning_rate=1e-2).minimize(loss2) # they should both be applied by l1, and keep the same np.testing.assert_allclose( linear1.weight.numpy(), linear2.weight.numpy(), rtol=1e-05, err_msg= 'weight should use the regularization in fluid.ParamAttr!') np.testing.assert_allclose( linear1.bias.numpy(), linear2.bias.numpy(), rtol=1e-05, err_msg='bias should use the regularization in fluid.ParamAttr!' ) if __name__ == '__main__': unittest.main()