# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import unittest import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core class TestQueue(unittest.TestCase): def test_eq(self): """ test queue_generator op, enqueue op and dequeue op. """ main_program = fluid.Program() startup_program = fluid.Program() value = np.random.rand(1) with fluid.program_guard(main_program, startup_program): data_in = layers.create_global_var(shape=[2, 3], value=value, dtype="float32", persistable=True, name='var_in') data_out = layers.create_global_var(shape=[2, 3], value=value - 1.0, dtype="float32", persistable=True, name='var_out') startup_block = startup_program.block(0) queue_name = 'blocking_queue' startup_block.create_var(name=queue_name, persistable=True, type=core.VarDesc.VarType.RAW) startup_block.append_op(type="queue_generator", attrs={'names': [queue_name]}) block = main_program.block(0) block.append_op(type='enqueue', inputs={'X': data_in}, attrs={'queue_name': queue_name}) block.append_op(type='dequeue', outputs={'Out': [data_out]}, attrs={'queue_name': queue_name}) place = fluid.CUDAPlace( 0) if core.is_compiled_with_cuda() else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_program) ret, = exe.run(main_program, fetch_list=[data_out.name]) np.testing.assert_allclose(np.asarray(ret), np.full((2, 3), value, np.float32), rtol=1e-05) if __name__ == '__main__': unittest.main()