/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #define MAX_RANK_SUPPORTED 6 #define EXPAND_TEMPLATE(z, n, data) \ case n + 1: { \ Expand(context); \ break; \ } #define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~) #define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED)) #define EXPAND_GRAD_CASE(n) \ case n: { \ ExpandBackward(context, reshape_dims_vec, reduce_dims_vec); \ break; \ } #define EXPAND_GRAD_TEMPLATE(z, n, data) \ BOOST_PP_IF(COND(n), EXPAND_GRAD_CASE(n), ) #define REP_EXPAND_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_GRAD_TEMPLATE, ~) namespace paddle { namespace operators { inline std::vector get_expand_times( const framework::ExecutionContext& ctx) { if (ctx.HasInput("ExpandTimes")) { auto* expand_tensor = ctx.Input("ExpandTimes"); auto* expand_data = expand_tensor->data(); framework::Tensor cpu_expand_tensor; if (platform::is_gpu_place(expand_tensor->place())) { TensorCopySync(*expand_tensor, platform::CPUPlace(), &cpu_expand_tensor); expand_data = cpu_expand_tensor.data(); } auto vec_epxand_times = std::vector(expand_data, expand_data + expand_tensor->numel()); return vec_epxand_times; } auto list_expand_times_tensor = ctx.MultiInput("expand_times_tensor"); if (list_expand_times_tensor.size() > 0) { // get tensor from std::vector vec_epxand_times; for (size_t i = 0; i < list_expand_times_tensor.size(); ++i) { auto tensor = list_expand_times_tensor[i]; if (platform::is_gpu_place(tensor->place())) { framework::Tensor temp; TensorCopySync(*tensor, platform::CPUPlace(), &temp); vec_epxand_times.push_back(*temp.data()); } else { vec_epxand_times.push_back(*tensor->data()); } } return vec_epxand_times; } else { return ctx.Attr>("expand_times"); } } using Tensor = framework::Tensor; template using EigenVector = framework::EigenVector; template using EigenTensor = framework::EigenTensor; using framework::To32BitIndex; template class ExpandKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto rank = context.Input("X")->dims().size(); PADDLE_ENFORCE_GE( rank, 1, platform::errors::InvalidArgument( "The number of dimensions of the input 'x' for Op(expand) " "must be greater than or equal to 1, but the value received is %d.", rank)); PADDLE_ENFORCE_LE( rank, MAX_RANK_SUPPORTED, platform::errors::InvalidArgument( "The number of dimensions of the input 'x' for Op(expand) " "must be less than or equal to %d, but the value received is %d.", MAX_RANK_SUPPORTED, rank)); switch (rank) { REP_EXPAND_TEMPLATE(MAX_RANK_SUPPORTED) } } protected: template void Expand(const framework::ExecutionContext& context) const { auto* in0 = context.Input("X"); auto in_dims = in0->dims(); auto expand_times = get_expand_times(context); PADDLE_ENFORCE_EQ( static_cast(in_dims.size()), expand_times.size(), platform::errors::InvalidArgument( "The number of elements (%d) of 'expand_times' for " "Op(expand) must be equal to the number " "of dimensions (%d) of the input.", expand_times.size(), static_cast(in_dims.size()))); auto* out0 = context.Output("Out"); Eigen::DSizes bcast_dims; for (size_t i = 0; i < expand_times.size(); ++i) { bcast_dims[i] = expand_times[i]; } framework::DDim out_dims(in_dims); for (size_t i = 0; i < expand_times.size(); ++i) { out_dims[i] *= expand_times[i]; } out0->Resize(out_dims); auto x = EigenTensor::From(*in0); out0->mutable_data(context.GetPlace()); auto y = EigenTensor::From(*out0); auto& place = *context.template device_context().eigen_device(); // use 32-bit index to speed up bool use_32bit_index = y.size() < Eigen::NumTraits::highest(); if (use_32bit_index) { To32BitIndex(y).device(place) = To32BitIndex(x).broadcast(bcast_dims); } else { y.device(place) = x.broadcast(bcast_dims); } } }; template class ExpandGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("X"); // auto& expand_times = context.Attr>("expand_times"); auto expand_times = get_expand_times(context); auto x_dims = in0->dims(); // 1. reshape_dims_vec is the broadcast parameter. // 2. reduce_dims_vec is the dimension parameter to compute gradients. For // each dimension expanded, the gradients should be summed to original // size. std::vector reshape_dims_vec; std::vector reduce_dims_vec; for (size_t i = 0; i < expand_times.size(); ++i) { reduce_dims_vec.push_back(reshape_dims_vec.size()); reshape_dims_vec.push_back(expand_times[i]); reshape_dims_vec.push_back(x_dims[i]); } int dims = reduce_dims_vec.size(); bool just_copy = true; for (size_t i = 0; i < expand_times.size(); i++) { if (expand_times[i] != 1) { just_copy = false; break; } } // no need reduce, just copy if (just_copy) { auto* in0 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); out0->mutable_data(context.GetPlace()); framework::TensorCopy(*in0, context.GetPlace(), context.device_context(), out0); } else { PADDLE_ENFORCE_GE(dims, 1, platform::errors::InvalidArgument( "The number of dimensions of the input " "'Out@GRAD' for Op(expand_grad)" " must be greater than or equal to 1, but " "the value received is %d.", dims)); PADDLE_ENFORCE_LE(dims, MAX_RANK_SUPPORTED, platform::errors::InvalidArgument( "The number of dimensions of the input 'Out@GRAD' " "for Op(expand_grad) must be less than or equal " "to %d, but the value received is %d.", MAX_RANK_SUPPORTED, dims)); switch (dims) { REP_EXPAND_GRAD_TEMPLATE(MAX_RANK_SUPPORTED) } } } protected: template void ExpandBackward(const framework::ExecutionContext& context, const std::vector& reshape_dims_vec, const std::vector& reduce_dims_vec) const { size_t reshape_size = reshape_dims_vec.size(); size_t reduce_size = reduce_dims_vec.size(); PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(), platform::errors::InvalidArgument( "Inconsistent size between template Dims (%d) and " "reshape dimensions (%d).", reshape_size, reshape_dims_vec.size())); PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(), platform::errors::InvalidArgument( "Inconsistent size between template Dims (%d) and " "reduce dimensions (%d).", reduce_size, reduce_dims_vec.size())); auto* in0 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); out0->mutable_data(context.GetPlace()); auto x_grad = EigenVector::Flatten(*out0); Eigen::DSizes reshape_dims; for (size_t i = 0; i < reshape_size; ++i) { reshape_dims[i] = reshape_dims_vec[i]; } Eigen::DSizes reduce_dims; for (size_t i = 0; i < reduce_size; ++i) { reduce_dims[i] = reduce_dims_vec[i]; } auto out_grad = EigenVector::Flatten(*in0); x_grad.device( *context.template device_context().eigen_device()) = out_grad.reshape(reshape_dims) .sum(reduce_dims) .reshape(x_grad.dimensions()); } }; } // namespace operators } // namespace paddle