# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from re import X import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard np.random.seed(10) class TestBucketizeAPI(unittest.TestCase): # test paddle.tensor.math.nanmean def setUp(self): self.sorted_sequence = np.array([2, 4, 8, 16]).astype("float64") self.x = np.array([[0, 8, 4, 16], [-1, 2, 8, 4]]).astype("float64") self.place = [paddle.CPUPlace()] if core.is_compiled_with_cuda(): self.place.append(paddle.CUDAPlace(0)) def test_api_static(self): paddle.enable_static() def run(place): with paddle.static.program_guard(paddle.static.Program()): sorted_sequence = paddle.static.data( 'SortedSequence', shape=self.sorted_sequence.shape, dtype="float64") x = paddle.static.data('x', shape=self.x.shape, dtype="float64") out1 = paddle.bucketize(x, sorted_sequence) out2 = paddle.bucketize(x, sorted_sequence, right=True) exe = paddle.static.Executor(place) res = exe.run(feed={ 'SortedSequence': self.sorted_sequence, 'x': self.x }, fetch_list=[out1, out2]) out_ref = np.searchsorted(self.sorted_sequence, self.x) out_ref1 = np.searchsorted(self.sorted_sequence, self.x, side='right') self.assertTrue(np.allclose(out_ref, res[0])) self.assertTrue(np.allclose(out_ref1, res[1])) for place in self.place: run(place) def test_api_dygraph(self): def run(place): paddle.disable_static(place) sorted_sequence = paddle.to_tensor(self.sorted_sequence) x = paddle.to_tensor(self.x) out1 = paddle.bucketize(x, sorted_sequence) out2 = paddle.bucketize(x, sorted_sequence, right=True) out_ref1 = np.searchsorted(self.sorted_sequence, self.x) out_ref2 = np.searchsorted(self.sorted_sequence, self.x, side='right') self.assertEqual(np.allclose(out_ref1, out1.numpy()), True) self.assertEqual(np.allclose(out_ref2, out2.numpy()), True) paddle.enable_static() for place in self.place: run(place) def test_out_int32(self): paddle.disable_static() sorted_sequence = paddle.to_tensor(self.sorted_sequence) x = paddle.to_tensor(self.x) out = paddle.bucketize(x, sorted_sequence, out_int32=True) self.assertTrue(out.type, 'int32') def test_bucketize_dims_error(self): with paddle.static.program_guard(paddle.static.Program()): sorted_sequence = paddle.static.data('SortedSequence', shape=[2, 2], dtype="float64") x = paddle.static.data('x', shape=[2, 5], dtype="float64") self.assertRaises(ValueError, paddle.bucketize, x, sorted_sequence) def test_input_error(self): for place in self.place: paddle.disable_static(place) sorted_sequence = paddle.to_tensor(self.sorted_sequence) self.assertRaises(ValueError, paddle.bucketize, self.x, sorted_sequence) def test_empty_input_error(self): for place in self.place: paddle.disable_static(place) sorted_sequence = paddle.to_tensor(self.sorted_sequence) x = paddle.to_tensor(self.x) self.assertRaises(ValueError, paddle.bucketize, None, sorted_sequence) self.assertRaises(AttributeError, paddle.bucketize, x, None) if __name__ == "__main__": unittest.main()