/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #if defined _WIN32 || defined __APPLE__ #else #define _LINUX #endif #include "paddle/fluid/framework/data_feed.h" #ifdef _LINUX #include #include #include #include #endif #include #include "gflags/gflags.h" #include "google/protobuf/io/zero_copy_stream_impl.h" #include "google/protobuf/message.h" #include "google/protobuf/text_format.h" #include "io/fs.h" #include "io/shell.h" #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/feed_fetch_type.h" #include "paddle/fluid/framework/fleet/box_wrapper.h" #include "paddle/fluid/framework/fleet/fleet_wrapper.h" #include "paddle/fluid/platform/timer.h" namespace paddle { namespace framework { void RecordCandidateList::ReSize(size_t length) { _mutex.lock(); _capacity = length; CHECK(_capacity > 0); // NOLINT _candidate_list.clear(); _candidate_list.resize(_capacity); _full = false; _cur_size = 0; _total_size = 0; _mutex.unlock(); } void RecordCandidateList::ReInit() { _mutex.lock(); _full = false; _cur_size = 0; _total_size = 0; _mutex.unlock(); } void RecordCandidateList::AddAndGet(const Record& record, RecordCandidate* result) { _mutex.lock(); size_t index = 0; ++_total_size; auto fleet_ptr = FleetWrapper::GetInstance(); if (!_full) { _candidate_list[_cur_size++] = record; _full = (_cur_size == _capacity); } else { CHECK(_cur_size == _capacity); index = fleet_ptr->LocalRandomEngine()() % _total_size; if (index < _capacity) { _candidate_list[index] = record; } } index = fleet_ptr->LocalRandomEngine()() % _cur_size; *result = _candidate_list[index]; _mutex.unlock(); } void DataFeed::AddFeedVar(Variable* var, const std::string& name) { CheckInit(); for (size_t i = 0; i < use_slots_.size(); ++i) { if (name == use_slots_[i]) { if (var == nullptr) { feed_vec_[i] = nullptr; } else { feed_vec_[i] = var->GetMutable(); } } } } bool DataFeed::SetFileList(const std::vector& files) { std::unique_lock lock(*mutex_for_pick_file_); CheckInit(); // Do not set finish_set_filelist_ flag, // since a user may set file many times after init reader filelist_.assign(files.begin(), files.end()); finish_set_filelist_ = true; return true; } void DataFeed::SetBatchSize(int batch_size) { PADDLE_ENFORCE_GT(batch_size, 0, platform::errors::InvalidArgument( "Batch size %d is illegal.", batch_size)); default_batch_size_ = batch_size; } bool DataFeed::PickOneFile(std::string* filename) { PADDLE_ENFORCE_NOT_NULL( mutex_for_pick_file_, platform::errors::PreconditionNotMet( "You should call SetFileListMutex before PickOneFile")); PADDLE_ENFORCE_NOT_NULL( file_idx_, platform::errors::PreconditionNotMet( "You should call SetFileListIndex before PickOneFile")); std::unique_lock lock(*mutex_for_pick_file_); if (*file_idx_ == filelist_.size()) { VLOG(3) << "DataFeed::PickOneFile no more file to pick"; return false; } VLOG(3) << "file_idx_=" << *file_idx_; *filename = filelist_[(*file_idx_)++]; return true; } void DataFeed::CheckInit() { PADDLE_ENFORCE(finish_init_, "Initialization did not succeed."); } void DataFeed::CheckSetFileList() { PADDLE_ENFORCE(finish_set_filelist_, "Set filelist did not succeed."); } void DataFeed::CheckStart() { PADDLE_ENFORCE_EQ(finish_start_, true, platform::errors::PreconditionNotMet( "Datafeed has not started running yet.")); } void DataFeed::AssignFeedVar(const Scope& scope) { CheckInit(); for (size_t i = 0; i < use_slots_.size(); ++i) { feed_vec_[i] = scope.FindVar(use_slots_[i])->GetMutable(); } } void DataFeed::CopyToFeedTensor(void* dst, const void* src, size_t size) { if (platform::is_cpu_place(this->place_)) { memcpy(dst, src, size); } else { #ifdef PADDLE_WITH_CUDA cudaMemcpy(dst, src, size, cudaMemcpyHostToDevice); #else PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option"); #endif } } template void PrivateQueueDataFeed::SetQueueSize(int queue_size) { PADDLE_ENFORCE(queue_size > 0, "Illegal queue size: %d.", queue_size); queue_size_ = queue_size; queue_ = paddle::framework::MakeChannel(); queue_->SetCapacity(queue_size); } template bool PrivateQueueDataFeed::Start() { CheckSetFileList(); read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this); read_thread_.detach(); finish_start_ = true; return true; } template void PrivateQueueDataFeed::ReadThread() { #ifdef _LINUX std::string filename; while (PickOneFile(&filename)) { int err_no = 0; fp_ = fs_open_read(filename, &err_no, pipe_command_); __fsetlocking(&*fp_, FSETLOCKING_BYCALLER); T instance; while (ParseOneInstanceFromPipe(&instance)) { queue_->Put(instance); } } queue_->Close(); #endif } template int PrivateQueueDataFeed::Next() { #ifdef _LINUX CheckStart(); int index = 0; T ins_vec; while (index < default_batch_size_) { T instance; if (!queue_->Get(instance)) { break; } AddInstanceToInsVec(&ins_vec, instance, index++); } batch_size_ = index; if (batch_size_ != 0) { PutToFeedVec(ins_vec); } return batch_size_; #else return 0; #endif } // explicit instantiation template class PrivateQueueDataFeed>; template InMemoryDataFeed::InMemoryDataFeed() { this->file_idx_ = nullptr; this->mutex_for_pick_file_ = nullptr; this->fp_ = nullptr; this->thread_id_ = 0; this->thread_num_ = 1; this->parse_ins_id_ = false; this->parse_content_ = false; this->parse_logkey_ = false; this->enable_pv_merge_ = false; this->current_phase_ = 1; // 1:join ;0:update this->input_channel_ = nullptr; this->output_channel_ = nullptr; this->consume_channel_ = nullptr; } template bool InMemoryDataFeed::Start() { #ifdef _LINUX this->CheckSetFileList(); if (output_channel_->Size() == 0 && input_channel_->Size() != 0) { std::vector data; input_channel_->Read(data); output_channel_->Write(std::move(data)); } #endif this->finish_start_ = true; return true; } template int InMemoryDataFeed::Next() { #ifdef _LINUX this->CheckStart(); CHECK(output_channel_ != nullptr); CHECK(consume_channel_ != nullptr); VLOG(3) << "output_channel_ size=" << output_channel_->Size() << ", consume_channel_ size=" << consume_channel_->Size() << ", thread_id=" << thread_id_; int index = 0; T instance; std::vector ins_vec; ins_vec.reserve(this->default_batch_size_); while (index < this->default_batch_size_) { if (output_channel_->Size() == 0) { break; } output_channel_->Get(instance); ins_vec.push_back(instance); ++index; consume_channel_->Put(std::move(instance)); } this->batch_size_ = index; VLOG(3) << "batch_size_=" << this->batch_size_ << ", thread_id=" << thread_id_; if (this->batch_size_ != 0) { PutToFeedVec(ins_vec); } else { VLOG(3) << "finish reading, output_channel_ size=" << output_channel_->Size() << ", consume_channel_ size=" << consume_channel_->Size() << ", thread_id=" << thread_id_; } return this->batch_size_; #else return 0; #endif } template void InMemoryDataFeed::SetInputChannel(void* channel) { input_channel_ = static_cast*>(channel); } template void InMemoryDataFeed::SetOutputChannel(void* channel) { output_channel_ = static_cast*>(channel); } template void InMemoryDataFeed::SetConsumeChannel(void* channel) { consume_channel_ = static_cast*>(channel); } template void InMemoryDataFeed::SetInputPvChannel(void* channel) { input_pv_channel_ = static_cast*>(channel); } template void InMemoryDataFeed::SetOutputPvChannel(void* channel) { output_pv_channel_ = static_cast*>(channel); } template void InMemoryDataFeed::SetConsumePvChannel(void* channel) { consume_pv_channel_ = static_cast*>(channel); } template void InMemoryDataFeed::SetThreadId(int thread_id) { thread_id_ = thread_id; } template void InMemoryDataFeed::SetThreadNum(int thread_num) { thread_num_ = thread_num; } template void InMemoryDataFeed::SetParseContent(bool parse_content) { parse_content_ = parse_content; } template void InMemoryDataFeed::SetParseLogKey(bool parse_logkey) { parse_logkey_ = parse_logkey; } template void InMemoryDataFeed::SetEnablePvMerge(bool enable_pv_merge) { enable_pv_merge_ = enable_pv_merge; } template void InMemoryDataFeed::SetCurrentPhase(int current_phase) { current_phase_ = current_phase; } template void InMemoryDataFeed::SetParseInsId(bool parse_ins_id) { parse_ins_id_ = parse_ins_id; } template void InMemoryDataFeed::LoadIntoMemory() { #ifdef _LINUX VLOG(3) << "LoadIntoMemory() begin, thread_id=" << thread_id_; std::string filename; while (this->PickOneFile(&filename)) { VLOG(3) << "PickOneFile, filename=" << filename << ", thread_id=" << thread_id_; #ifdef PADDLE_WITH_BOX_PS if (BoxWrapper::GetInstance()->UseAfsApi()) { this->fp_ = BoxWrapper::GetInstance()->afs_manager->GetFile( filename, this->pipe_command_); } else { #endif int err_no = 0; this->fp_ = fs_open_read(filename, &err_no, this->pipe_command_); #ifdef PADDLE_WITH_BOX_PS } #endif CHECK(this->fp_ != nullptr); __fsetlocking(&*(this->fp_), FSETLOCKING_BYCALLER); paddle::framework::ChannelWriter writer(input_channel_); T instance; platform::Timer timeline; timeline.Start(); while (ParseOneInstanceFromPipe(&instance)) { writer << std::move(instance); instance = T(); } writer.Flush(); timeline.Pause(); VLOG(3) << "LoadIntoMemory() read all lines, file=" << filename << ", cost time=" << timeline.ElapsedSec() << " seconds, thread_id=" << thread_id_; } VLOG(3) << "LoadIntoMemory() end, thread_id=" << thread_id_; #endif } // explicit instantiation template class InMemoryDataFeed; void MultiSlotDataFeed::Init( const paddle::framework::DataFeedDesc& data_feed_desc) { finish_init_ = false; finish_set_filelist_ = false; finish_start_ = false; PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(), "Multi_slot_desc has not been set."); paddle::framework::MultiSlotDesc multi_slot_desc = data_feed_desc.multi_slot_desc(); SetBatchSize(data_feed_desc.batch_size()); // temporarily set queue size = batch size * 100 SetQueueSize(data_feed_desc.batch_size() * 100); size_t all_slot_num = multi_slot_desc.slots_size(); all_slots_.resize(all_slot_num); all_slots_type_.resize(all_slot_num); use_slots_index_.resize(all_slot_num); total_dims_without_inductive_.resize(all_slot_num); inductive_shape_index_.resize(all_slot_num); use_slots_.clear(); use_slots_is_dense_.clear(); for (size_t i = 0; i < all_slot_num; ++i) { const auto& slot = multi_slot_desc.slots(i); all_slots_[i] = slot.name(); all_slots_type_[i] = slot.type(); use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1; total_dims_without_inductive_[i] = 1; inductive_shape_index_[i] = -1; if (slot.is_used()) { use_slots_.push_back(all_slots_[i]); use_slots_is_dense_.push_back(slot.is_dense()); std::vector local_shape; if (slot.is_dense()) { for (int j = 0; j < slot.shape_size(); ++j) { if (slot.shape(j) > 0) { total_dims_without_inductive_[i] *= slot.shape(j); } if (slot.shape(j) == -1) { inductive_shape_index_[i] = j; } } } for (int j = 0; j < slot.shape_size(); ++j) { local_shape.push_back(slot.shape(j)); } use_slots_shape_.push_back(local_shape); } } feed_vec_.resize(use_slots_.size()); pipe_command_ = data_feed_desc.pipe_command(); finish_init_ = true; } void MultiSlotDataFeed::ReadThread() { #ifdef _LINUX std::string filename; while (PickOneFile(&filename)) { int err_no = 0; fp_ = fs_open_read(filename, &err_no, pipe_command_); CHECK(fp_ != nullptr); __fsetlocking(&*fp_, FSETLOCKING_BYCALLER); std::vector instance; int ins_num = 0; while (ParseOneInstanceFromPipe(&instance)) { ins_num++; queue_->Put(instance); } VLOG(3) << "filename: " << filename << " inst num: " << ins_num; } queue_->Close(); #endif } bool MultiSlotDataFeed::CheckFile(const char* filename) { #ifdef _LINUX CheckInit(); // get info of slots std::ifstream fin(filename); if (!fin.good()) { VLOG(1) << "error: open file<" << filename << "> fail"; return false; } std::string line; int instance_cout = 0; std::string all_slots_alias = ""; for (const auto& alias : all_slots_) { all_slots_alias += alias + " "; } std::string use_slots_alias = ""; for (const auto& alias : use_slots_) { use_slots_alias += alias + " "; } VLOG(3) << "total slots num: " << all_slots_.size(); VLOG(3) << "total slots alias: " << all_slots_alias; VLOG(3) << "used slots num: " << use_slots_.size(); VLOG(3) << "used slots alias: " << use_slots_alias; while (getline(fin, line)) { ++instance_cout; const char* str = line.c_str(); char* endptr = const_cast(str); int len = line.length(); for (size_t i = 0; i < all_slots_.size(); ++i) { auto num = strtol(endptr, &endptr, 10); if (num < 0) { VLOG(0) << "error: the number of ids is a negative number: " << num; VLOG(0) << "please check line<" << instance_cout << "> in file<" << filename << ">"; return false; } else if (num == 0) { VLOG(0) << "error: the number of ids can not be zero, you need " "padding it in data generator; or if there is something wrong" " with the data, please check if the data contains unresolvable " "characters."; VLOG(0) << "please check line<" << instance_cout << "> in file<" << filename << ">"; return false; } else if (errno == ERANGE || num > INT_MAX) { VLOG(0) << "error: the number of ids greater than INT_MAX"; VLOG(0) << "please check line<" << instance_cout << "> in file<" << filename << ">"; return false; } if (all_slots_type_[i] == "float") { for (int i = 0; i < num; ++i) { strtof(endptr, &endptr); if (errno == ERANGE) { VLOG(0) << "error: the value is out of the range of " "representable values for float"; VLOG(0) << "please check line<" << instance_cout << "> in file<" << filename << ">"; return false; } if (i + 1 != num && endptr - str == len) { VLOG(0) << "error: there is a wrong with the number of ids."; VLOG(0) << "please check line<" << instance_cout << "> in file<" << filename << ">"; return false; } } } else if (all_slots_type_[i] == "uint64") { for (int i = 0; i < num; ++i) { strtoull(endptr, &endptr, 10); if (errno == ERANGE) { VLOG(0) << "error: the value is out of the range of " "representable values for uint64_t"; VLOG(0) << "please check line<" << instance_cout << "> in file<" << filename << ">"; return false; } if (i + 1 != num && endptr - str == len) { VLOG(0) << "error: there is a wrong with the number of ids."; VLOG(0) << "please check line<" << instance_cout << "> in file<" << filename << ">"; return false; } } } else { VLOG(0) << "error: this type<" << all_slots_type_[i] << "> is not supported"; return false; } } // It may be added '\t' character to the end of the output of reduce // task when processes data by Hadoop(when the output of the reduce // task of Hadoop has only one field, it will add a '\t' at the end // of the line by default, and you can use this option to avoid it: // `-D mapred.textoutputformat.ignoreseparator=true`), which does // not affect the correctness of the data. Therefore, it should be // judged that the data is not normal when the end of each line of // data contains characters which are not spaces. while (endptr - str != len) { if (!isspace(*(endptr++))) { VLOG(0) << "error: there is some extra characters at the end of the line."; VLOG(0) << "please check line<" << instance_cout << "> in file<" << filename << ">"; return false; } } } VLOG(3) << "instances cout: " << instance_cout; VLOG(3) << "The file format is correct"; #endif return true; } bool MultiSlotDataFeed::ParseOneInstanceFromPipe( std::vector* instance) { #ifdef _LINUX thread_local string::LineFileReader reader; if (!reader.getline(&*(fp_.get()))) { return false; } else { int use_slots_num = use_slots_.size(); instance->resize(use_slots_num); const char* str = reader.get(); std::string line = std::string(str); // VLOG(3) << line; char* endptr = const_cast(str); int pos = 0; for (size_t i = 0; i < use_slots_index_.size(); ++i) { int idx = use_slots_index_[i]; int num = strtol(&str[pos], &endptr, 10); PADDLE_ENFORCE_NE( num, 0, platform::errors::InvalidArgument( "The number of ids can not be zero, you need padding " "it in data generator; or if there is something wrong with " "the data, please check if the data contains unresolvable " "characters.\nplease check this error line: %s", str)); if (idx != -1) { (*instance)[idx].Init(all_slots_type_[i]); if ((*instance)[idx].GetType()[0] == 'f') { // float for (int j = 0; j < num; ++j) { float feasign = strtof(endptr, &endptr); (*instance)[idx].AddValue(feasign); } } else if ((*instance)[idx].GetType()[0] == 'u') { // uint64 for (int j = 0; j < num; ++j) { uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10); (*instance)[idx].AddValue(feasign); } } pos = endptr - str; } else { for (int j = 0; j <= num; ++j) { // pos = line.find_first_of(' ', pos + 1); while (line[pos + 1] != ' ') { pos++; } } } } return true; } #else return true; #endif } bool MultiSlotDataFeed::ParseOneInstance(std::vector* instance) { #ifdef _LINUX std::string line; if (getline(file_, line)) { int use_slots_num = use_slots_.size(); instance->resize(use_slots_num); // parse line const char* str = line.c_str(); char* endptr = const_cast(str); int pos = 0; for (size_t i = 0; i < use_slots_index_.size(); ++i) { int idx = use_slots_index_[i]; int num = strtol(&str[pos], &endptr, 10); PADDLE_ENFORCE( num, "The number of ids can not be zero, you need padding " "it in data generator; or if there is something wrong with " "the data, please check if the data contains unresolvable " "characters.\nplease check this error line: %s", str); if (idx != -1) { (*instance)[idx].Init(all_slots_type_[i]); if ((*instance)[idx].GetType()[0] == 'f') { // float for (int j = 0; j < num; ++j) { float feasign = strtof(endptr, &endptr); (*instance)[idx].AddValue(feasign); } } else if ((*instance)[idx].GetType()[0] == 'u') { // uint64 for (int j = 0; j < num; ++j) { uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10); (*instance)[idx].AddValue(feasign); } } pos = endptr - str; } else { for (int j = 0; j <= num; ++j) { pos = line.find_first_of(' ', pos + 1); } } } } else { return false; } #endif return false; } void MultiSlotDataFeed::AddInstanceToInsVec( std::vector* ins_vec, const std::vector& instance, int index) { #ifdef _LINUX if (index == 0) { ins_vec->resize(instance.size()); for (size_t i = 0; i < instance.size(); ++i) { (*ins_vec)[i].Init(instance[i].GetType()); (*ins_vec)[i].InitOffset(); } } for (size_t i = 0; i < instance.size(); ++i) { (*ins_vec)[i].AddIns(instance[i]); } #endif } void MultiSlotDataFeed::PutToFeedVec( const std::vector& ins_vec) { #ifdef _LINUX for (size_t i = 0; i < use_slots_.size(); ++i) { if (feed_vec_[i] == nullptr) { continue; } const auto& type = ins_vec[i].GetType(); const auto& offset = ins_vec[i].GetOffset(); int total_instance = static_cast(offset.back()); if (type[0] == 'f') { // float const auto& feasign = ins_vec[i].GetFloatData(); float* tensor_ptr = feed_vec_[i]->mutable_data({total_instance, 1}, this->place_); CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float)); } else if (type[0] == 'u') { // uint64 // no uint64_t type in paddlepaddle const auto& feasign = ins_vec[i].GetUint64Data(); int64_t* tensor_ptr = feed_vec_[i]->mutable_data( {total_instance, 1}, this->place_); CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(int64_t)); } LoD data_lod{offset}; feed_vec_[i]->set_lod(data_lod); if (use_slots_is_dense_[i]) { if (inductive_shape_index_[i] != -1) { use_slots_shape_[i][inductive_shape_index_[i]] = total_instance / total_dims_without_inductive_[i]; } feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i])); } } #endif } void MultiSlotInMemoryDataFeed::Init( const paddle::framework::DataFeedDesc& data_feed_desc) { finish_init_ = false; finish_set_filelist_ = false; finish_start_ = false; PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(), "Multi_slot_desc has not been set."); paddle::framework::MultiSlotDesc multi_slot_desc = data_feed_desc.multi_slot_desc(); SetBatchSize(data_feed_desc.batch_size()); size_t all_slot_num = multi_slot_desc.slots_size(); all_slots_.resize(all_slot_num); all_slots_type_.resize(all_slot_num); use_slots_index_.resize(all_slot_num); total_dims_without_inductive_.resize(all_slot_num); inductive_shape_index_.resize(all_slot_num); use_slots_.clear(); use_slots_is_dense_.clear(); for (size_t i = 0; i < all_slot_num; ++i) { const auto& slot = multi_slot_desc.slots(i); all_slots_[i] = slot.name(); all_slots_type_[i] = slot.type(); use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1; total_dims_without_inductive_[i] = 1; inductive_shape_index_[i] = -1; if (slot.is_used()) { use_slots_.push_back(all_slots_[i]); use_slots_is_dense_.push_back(slot.is_dense()); std::vector local_shape; if (slot.is_dense()) { for (int j = 0; j < slot.shape_size(); ++j) { if (slot.shape(j) > 0) { total_dims_without_inductive_[i] *= slot.shape(j); } if (slot.shape(j) == -1) { inductive_shape_index_[i] = j; } } } for (int j = 0; j < slot.shape_size(); ++j) { local_shape.push_back(slot.shape(j)); } use_slots_shape_.push_back(local_shape); } } feed_vec_.resize(use_slots_.size()); const int kEstimatedFeasignNumPerSlot = 5; // Magic Number for (size_t i = 0; i < all_slot_num; i++) { batch_float_feasigns_.push_back(std::vector()); batch_uint64_feasigns_.push_back(std::vector()); batch_float_feasigns_[i].reserve(default_batch_size_ * kEstimatedFeasignNumPerSlot); batch_uint64_feasigns_[i].reserve(default_batch_size_ * kEstimatedFeasignNumPerSlot); offset_.push_back(std::vector()); offset_[i].reserve(default_batch_size_ + 1); // Each lod info will prepend a zero } visit_.resize(all_slot_num, false); pipe_command_ = data_feed_desc.pipe_command(); finish_init_ = true; } void MultiSlotInMemoryDataFeed::GetMsgFromLogKey(const std::string& log_key, uint64_t* search_id, uint32_t* cmatch, uint32_t* rank) { std::string searchid_str = log_key.substr(16, 16); *search_id = (uint64_t)strtoull(searchid_str.c_str(), NULL, 16); std::string cmatch_str = log_key.substr(11, 3); *cmatch = (uint32_t)strtoul(cmatch_str.c_str(), NULL, 16); std::string rank_str = log_key.substr(14, 2); *rank = (uint32_t)strtoul(rank_str.c_str(), NULL, 16); } bool MultiSlotInMemoryDataFeed::ParseOneInstanceFromPipe(Record* instance) { #ifdef _LINUX thread_local string::LineFileReader reader; if (!reader.getline(&*(fp_.get()))) { return false; } else { const char* str = reader.get(); std::string line = std::string(str); // VLOG(3) << line; char* endptr = const_cast(str); int pos = 0; if (parse_ins_id_) { int num = strtol(&str[pos], &endptr, 10); CHECK(num == 1); // NOLINT pos = endptr - str + 1; size_t len = 0; while (str[pos + len] != ' ') { ++len; } instance->ins_id_ = std::string(str + pos, len); pos += len + 1; VLOG(3) << "ins_id " << instance->ins_id_; } if (parse_content_) { int num = strtol(&str[pos], &endptr, 10); CHECK(num == 1); // NOLINT pos = endptr - str + 1; size_t len = 0; while (str[pos + len] != ' ') { ++len; } instance->content_ = std::string(str + pos, len); pos += len + 1; VLOG(3) << "content " << instance->content_; } if (parse_logkey_) { int num = strtol(&str[pos], &endptr, 10); CHECK(num == 1); // NOLINT pos = endptr - str + 1; size_t len = 0; while (str[pos + len] != ' ') { ++len; } // parse_logkey std::string log_key = std::string(str + pos, len); uint64_t search_id; uint32_t cmatch; uint32_t rank; GetMsgFromLogKey(log_key, &search_id, &cmatch, &rank); instance->search_id = search_id; instance->cmatch = cmatch; instance->rank = rank; pos += len + 1; } for (size_t i = 0; i < use_slots_index_.size(); ++i) { int idx = use_slots_index_[i]; int num = strtol(&str[pos], &endptr, 10); PADDLE_ENFORCE( num, "The number of ids can not be zero, you need padding " "it in data generator; or if there is something wrong with " "the data, please check if the data contains unresolvable " "characters.\nplease check this error line: %s", str); if (idx != -1) { if (all_slots_type_[i][0] == 'f') { // float for (int j = 0; j < num; ++j) { float feasign = strtof(endptr, &endptr); // if float feasign is equal to zero, ignore it // except when slot is dense if (fabs(feasign) < 1e-6 && !use_slots_is_dense_[i]) { continue; } FeatureKey f; f.float_feasign_ = feasign; instance->float_feasigns_.push_back(FeatureItem(f, idx)); } } else if (all_slots_type_[i][0] == 'u') { // uint64 for (int j = 0; j < num; ++j) { uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10); // if uint64 feasign is equal to zero, ignore it // except when slot is dense if (feasign == 0 && !use_slots_is_dense_[i]) { continue; } FeatureKey f; f.uint64_feasign_ = feasign; instance->uint64_feasigns_.push_back(FeatureItem(f, idx)); } } pos = endptr - str; } else { for (int j = 0; j <= num; ++j) { // pos = line.find_first_of(' ', pos + 1); while (line[pos + 1] != ' ') { pos++; } } } } instance->float_feasigns_.shrink_to_fit(); instance->uint64_feasigns_.shrink_to_fit(); return true; } #else return false; #endif } bool MultiSlotInMemoryDataFeed::ParseOneInstance(Record* instance) { #ifdef _LINUX std::string line; if (getline(file_, line)) { VLOG(3) << line; // parse line const char* str = line.c_str(); char* endptr = const_cast(str); int pos = 0; for (size_t i = 0; i < use_slots_index_.size(); ++i) { int idx = use_slots_index_[i]; int num = strtol(&str[pos], &endptr, 10); PADDLE_ENFORCE( num, "The number of ids can not be zero, you need padding " "it in data generator; or if there is something wrong with " "the data, please check if the data contains unresolvable " "characters.\nplease check this error line: %s", str); if (idx != -1) { if (all_slots_type_[i][0] == 'f') { // float for (int j = 0; j < num; ++j) { float feasign = strtof(endptr, &endptr); if (fabs(feasign) < 1e-6) { continue; } FeatureKey f; f.float_feasign_ = feasign; instance->float_feasigns_.push_back(FeatureItem(f, idx)); } } else if (all_slots_type_[i][0] == 'u') { // uint64 for (int j = 0; j < num; ++j) { uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10); if (feasign == 0) { continue; } FeatureKey f; f.uint64_feasign_ = feasign; instance->uint64_feasigns_.push_back(FeatureItem(f, idx)); } } pos = endptr - str; } else { for (int j = 0; j <= num; ++j) { pos = line.find_first_of(' ', pos + 1); } } } instance->float_feasigns_.shrink_to_fit(); instance->uint64_feasigns_.shrink_to_fit(); return true; } else { return false; } #endif return false; } void MultiSlotInMemoryDataFeed::PutToFeedVec( const std::vector& ins_vec) { #ifdef _LINUX for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) { batch_float_feasigns_[i].clear(); batch_uint64_feasigns_[i].clear(); offset_[i].clear(); offset_[i].push_back(0); } ins_content_vec_.clear(); ins_content_vec_.reserve(ins_vec.size()); ins_id_vec_.clear(); ins_id_vec_.reserve(ins_vec.size()); for (size_t i = 0; i < ins_vec.size(); ++i) { auto& r = ins_vec[i]; ins_id_vec_.push_back(r.ins_id_); ins_content_vec_.push_back(r.content_); for (auto& item : r.float_feasigns_) { batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_); visit_[item.slot()] = true; } for (auto& item : r.uint64_feasigns_) { batch_uint64_feasigns_[item.slot()].push_back( item.sign().uint64_feasign_); visit_[item.slot()] = true; } for (size_t j = 0; j < use_slots_.size(); ++j) { const auto& type = all_slots_type_[j]; if (visit_[j]) { visit_[j] = false; } else { // fill slot value with default value 0 if (type[0] == 'f') { // float batch_float_feasigns_[j].push_back(0.0); } else if (type[0] == 'u') { // uint64 batch_uint64_feasigns_[j].push_back(0); } } // get offset of this ins in this slot if (type[0] == 'f') { // float offset_[j].push_back(batch_float_feasigns_[j].size()); } else if (type[0] == 'u') { // uint64 offset_[j].push_back(batch_uint64_feasigns_[j].size()); } } } for (size_t i = 0; i < use_slots_.size(); ++i) { if (feed_vec_[i] == nullptr) { continue; } int total_instance = offset_[i].back(); const auto& type = all_slots_type_[i]; if (type[0] == 'f') { // float float* feasign = batch_float_feasigns_[i].data(); float* tensor_ptr = feed_vec_[i]->mutable_data({total_instance, 1}, this->place_); CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float)); } else if (type[0] == 'u') { // uint64 // no uint64_t type in paddlepaddle uint64_t* feasign = batch_uint64_feasigns_[i].data(); int64_t* tensor_ptr = feed_vec_[i]->mutable_data( {total_instance, 1}, this->place_); CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t)); } auto& slot_offset = offset_[i]; LoD data_lod{slot_offset}; feed_vec_[i]->set_lod(data_lod); if (use_slots_is_dense_[i]) { if (inductive_shape_index_[i] != -1) { use_slots_shape_[i][inductive_shape_index_[i]] = total_instance / total_dims_without_inductive_[i]; } feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i])); } } #endif } #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) template void PrivateInstantDataFeed::PutToFeedVec() { for (size_t i = 0; i < use_slots_.size(); ++i) { const auto& type = ins_vec_[i].GetType(); const auto& offset = ins_vec_[i].GetOffset(); int total_instance = static_cast(offset.back()); if (type[0] == 'f') { // float const auto& feasign = ins_vec_[i].GetFloatData(); float* tensor_ptr = feed_vec_[i]->mutable_data({total_instance, 1}, this->place_); CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(float)); } else if (type[0] == 'u') { // uint64 // no uint64_t type in paddlepaddle const auto& feasign = ins_vec_[i].GetUint64Data(); int64_t* tensor_ptr = feed_vec_[i]->mutable_data( {total_instance, 1}, this->place_); CopyToFeedTensor(tensor_ptr, &feasign[0], total_instance * sizeof(int64_t)); } LoD data_lod{offset}; feed_vec_[i]->set_lod(data_lod); if (use_slots_is_dense_[i]) { int64_t total_dims = 1; for (const auto e : use_slots_shape_[i]) { total_dims *= e; } PADDLE_ENFORCE( total_dims == total_instance, "The actual data size of slot[%s] doesn't match its declaration", use_slots_[i].c_str()); feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i])); } } } template int PrivateInstantDataFeed::Next() { if (ParseOneMiniBatch()) { PutToFeedVec(); return ins_vec_[0].GetBatchSize(); } Postprocess(); std::string filename; if (!PickOneFile(&filename)) { return -1; } if (!Preprocess(filename)) { return -1; } PADDLE_ENFORCE(true == ParseOneMiniBatch(), "Fail to parse mini-batch data"); PutToFeedVec(); return ins_vec_[0].GetBatchSize(); } template void PrivateInstantDataFeed::Init(const DataFeedDesc& data_feed_desc) { finish_init_ = false; finish_set_filelist_ = false; finish_start_ = false; PADDLE_ENFORCE(data_feed_desc.has_multi_slot_desc(), "Multi_slot_desc has not been set."); paddle::framework::MultiSlotDesc multi_slot_desc = data_feed_desc.multi_slot_desc(); SetBatchSize(data_feed_desc.batch_size()); size_t all_slot_num = multi_slot_desc.slots_size(); all_slots_.resize(all_slot_num); all_slots_type_.resize(all_slot_num); use_slots_index_.resize(all_slot_num); multi_inductive_shape_index_.resize(all_slot_num); use_slots_.clear(); use_slots_is_dense_.clear(); for (size_t i = 0; i < all_slot_num; ++i) { const auto& slot = multi_slot_desc.slots(i); all_slots_[i] = slot.name(); all_slots_type_[i] = slot.type(); use_slots_index_[i] = slot.is_used() ? use_slots_.size() : -1; if (slot.is_used()) { use_slots_.push_back(all_slots_[i]); use_slots_is_dense_.push_back(slot.is_dense()); std::vector local_shape; if (slot.is_dense()) { for (int j = 0; j < slot.shape_size(); ++j) { if (slot.shape(j) == -1) { multi_inductive_shape_index_[i].push_back(j); } } } for (int j = 0; j < slot.shape_size(); ++j) { local_shape.push_back(slot.shape(j)); } use_slots_shape_.push_back(local_shape); } } feed_vec_.resize(use_slots_.size()); ins_vec_.resize(use_slots_.size()); finish_init_ = true; } template class PrivateInstantDataFeed>; bool MultiSlotFileInstantDataFeed::Preprocess(const std::string& filename) { fd_ = open(filename.c_str(), O_RDONLY); PADDLE_ENFORCE(fd_ != -1, "Fail to open file: %s", filename.c_str()); struct stat sb; fstat(fd_, &sb); end_ = static_cast(sb.st_size); buffer_ = reinterpret_cast(mmap(NULL, end_, PROT_READ, MAP_PRIVATE, fd_, 0)); PADDLE_ENFORCE(buffer_ != MAP_FAILED, strerror(errno)); offset_ = 0; return true; } bool MultiSlotFileInstantDataFeed::Postprocess() { if (buffer_ != nullptr) { munmap(buffer_, end_); buffer_ = nullptr; } if (fd_ != -1) { close(fd_); fd_ = -1; end_ = 0; offset_ = 0; } return true; } bool MultiSlotFileInstantDataFeed::ParseOneMiniBatch() { if (offset_ == end_) { return false; } batch_size_ = 0; while (batch_size_ < default_batch_size_ && offset_ < end_) { for (size_t i = 0; i < use_slots_index_.size(); ++i) { int idx = use_slots_index_[i]; char type = all_slots_type_[i][0]; uint16_t num = *reinterpret_cast(buffer_ + offset_); PADDLE_ENFORCE( num, "The number of ids can not be zero, you need padding " "it in data generator; or if there is something wrong with " "the data, please check if the data contains unresolvable " "characters."); offset_ += sizeof(uint16_t); if (idx != -1) { int inductive_size = multi_inductive_shape_index_[i].size(); if (UNLIKELY(batch_size_ == 0)) { ins_vec_[idx].Init(all_slots_type_[i], default_batch_size_ * num); ins_vec_[idx].InitOffset(default_batch_size_); uint64_t* inductive_shape = reinterpret_cast(buffer_ + offset_); for (int inductive_id = 0; inductive_id < inductive_size; ++inductive_id) { use_slots_shape_[i][multi_inductive_shape_index_[i][inductive_id]] = static_cast(*(inductive_shape + inductive_id)); } } num -= inductive_size; offset_ += sizeof(uint64_t) * inductive_size; if (type == 'f') { ins_vec_[idx].AppendValues( reinterpret_cast(buffer_ + offset_), num); offset_ += num * sizeof(float); } else if (type == 'u') { ins_vec_[idx].AppendValues( reinterpret_cast(buffer_ + offset_), num); offset_ += num * sizeof(uint64_t); } } else { if (type == 'f') { offset_ += num * sizeof(float); } else if (type == 'u') { offset_ += num * sizeof(uint64_t); } } } ++batch_size_; // OPTIMIZE: It is better to insert check codes between instances for format // checking } PADDLE_ENFORCE(batch_size_ == default_batch_size_ || offset_ == end_, "offset_ != end_"); return true; } #endif bool PaddleBoxDataFeed::Start() { #ifdef _LINUX int phase = GetCurrentPhase(); // join: 1, update: 0 this->CheckSetFileList(); if (enable_pv_merge_ && phase == 1) { // join phase : input_pv_channel to output_pv_channel if (output_pv_channel_->Size() == 0 && input_pv_channel_->Size() != 0) { std::vector data; input_pv_channel_->Read(data); output_pv_channel_->Write(std::move(data)); } } else { // input_channel to output if (output_channel_->Size() == 0 && input_channel_->Size() != 0) { std::vector data; input_channel_->Read(data); output_channel_->Write(std::move(data)); } } #endif this->finish_start_ = true; return true; } int PaddleBoxDataFeed::Next() { #ifdef _LINUX int phase = GetCurrentPhase(); // join: 1, update: 0 this->CheckStart(); if (enable_pv_merge_ && phase == 1) { // join phase : output_pv_channel to consume_pv_channel CHECK(output_pv_channel_ != nullptr); CHECK(consume_pv_channel_ != nullptr); VLOG(3) << "output_pv_channel_ size=" << output_pv_channel_->Size() << ", consume_pv_channel_ size=" << consume_pv_channel_->Size() << ", thread_id=" << thread_id_; int index = 0; PvInstance pv_instance; std::vector pv_vec; pv_vec.reserve(this->pv_batch_size_); while (index < this->pv_batch_size_) { if (output_pv_channel_->Size() == 0) { break; } output_pv_channel_->Get(pv_instance); pv_vec.push_back(pv_instance); ++index; consume_pv_channel_->Put(std::move(pv_instance)); } this->batch_size_ = index; VLOG(3) << "pv_batch_size_=" << this->batch_size_ << ", thread_id=" << thread_id_; if (this->batch_size_ != 0) { PutToFeedVec(pv_vec); } else { VLOG(3) << "finish reading, output_pv_channel_ size=" << output_pv_channel_->Size() << ", consume_pv_channel_ size=" << consume_pv_channel_->Size() << ", thread_id=" << thread_id_; } return this->batch_size_; } else { this->batch_size_ = MultiSlotInMemoryDataFeed::Next(); return this->batch_size_; } #else return 0; #endif } void PaddleBoxDataFeed::Init(const DataFeedDesc& data_feed_desc) { MultiSlotInMemoryDataFeed::Init(data_feed_desc); rank_offset_name_ = data_feed_desc.rank_offset(); pv_batch_size_ = data_feed_desc.pv_batch_size(); } void PaddleBoxDataFeed::GetRankOffset(const std::vector& pv_vec, int ins_number) { int index = 0; int max_rank = 3; // the value is setting int row = ins_number; int col = max_rank * 2 + 1; int pv_num = pv_vec.size(); std::vector rank_offset_mat(row * col, -1); rank_offset_mat.shrink_to_fit(); for (int i = 0; i < pv_num; i++) { auto pv_ins = pv_vec[i]; int ad_num = pv_ins->ads.size(); int index_start = index; for (int j = 0; j < ad_num; ++j) { auto ins = pv_ins->ads[j]; int rank = -1; if ((ins->cmatch == 222 || ins->cmatch == 223) && ins->rank <= static_cast(max_rank) && ins->rank != 0) { rank = ins->rank; } rank_offset_mat[index * col] = rank; if (rank > 0) { for (int k = 0; k < ad_num; ++k) { auto cur_ins = pv_ins->ads[k]; int fast_rank = -1; if ((cur_ins->cmatch == 222 || cur_ins->cmatch == 223) && cur_ins->rank <= static_cast(max_rank) && cur_ins->rank != 0) { fast_rank = cur_ins->rank; } if (fast_rank > 0) { int m = fast_rank - 1; rank_offset_mat[index * col + 2 * m + 1] = cur_ins->rank; rank_offset_mat[index * col + 2 * m + 2] = index_start + k; } } } index += 1; } } int* rank_offset = rank_offset_mat.data(); int* tensor_ptr = rank_offset_->mutable_data({row, col}, this->place_); CopyToFeedTensor(tensor_ptr, rank_offset, row * col * sizeof(int)); } void PaddleBoxDataFeed::AssignFeedVar(const Scope& scope) { MultiSlotInMemoryDataFeed::AssignFeedVar(scope); // set rank offset memory int phase = GetCurrentPhase(); // join: 1, update: 0 if (enable_pv_merge_ && phase == 1) { rank_offset_ = scope.FindVar(rank_offset_name_)->GetMutable(); } } void PaddleBoxDataFeed::PutToFeedVec(const std::vector& pv_vec) { #ifdef _LINUX int ins_number = 0; std::vector ins_vec; for (auto& pv : pv_vec) { ins_number += pv->ads.size(); for (auto ins : pv->ads) { ins_vec.push_back(ins); } } GetRankOffset(pv_vec, ins_number); PutToFeedVec(ins_vec); #endif } int PaddleBoxDataFeed::GetCurrentPhase() { #ifdef PADDLE_WITH_BOX_PS auto box_ptr = paddle::framework::BoxWrapper::GetInstance(); return box_ptr->PassFlag(); // join: 1, update: 0 #else LOG(WARNING) << "It should be complied with BOX_PS..."; return current_phase_; #endif } void PaddleBoxDataFeed::PutToFeedVec(const std::vector& ins_vec) { #ifdef _LINUX for (size_t i = 0; i < batch_float_feasigns_.size(); ++i) { batch_float_feasigns_[i].clear(); batch_uint64_feasigns_[i].clear(); offset_[i].clear(); offset_[i].push_back(0); } ins_content_vec_.clear(); ins_content_vec_.reserve(ins_vec.size()); ins_id_vec_.clear(); ins_id_vec_.reserve(ins_vec.size()); for (size_t i = 0; i < ins_vec.size(); ++i) { auto r = ins_vec[i]; ins_id_vec_.push_back(r->ins_id_); ins_content_vec_.push_back(r->content_); for (auto& item : r->float_feasigns_) { batch_float_feasigns_[item.slot()].push_back(item.sign().float_feasign_); visit_[item.slot()] = true; } for (auto& item : r->uint64_feasigns_) { batch_uint64_feasigns_[item.slot()].push_back( item.sign().uint64_feasign_); visit_[item.slot()] = true; } for (size_t j = 0; j < use_slots_.size(); ++j) { const auto& type = all_slots_type_[j]; if (visit_[j]) { visit_[j] = false; } else { // fill slot value with default value 0 if (type[0] == 'f') { // float batch_float_feasigns_[j].push_back(0.0); } else if (type[0] == 'u') { // uint64 batch_uint64_feasigns_[j].push_back(0); } } // get offset of this ins in this slot if (type[0] == 'f') { // float offset_[j].push_back(batch_float_feasigns_[j].size()); } else if (type[0] == 'u') { // uint64 offset_[j].push_back(batch_uint64_feasigns_[j].size()); } } } for (size_t i = 0; i < use_slots_.size(); ++i) { if (feed_vec_[i] == nullptr) { continue; } int total_instance = offset_[i].back(); const auto& type = all_slots_type_[i]; if (type[0] == 'f') { // float float* feasign = batch_float_feasigns_[i].data(); float* tensor_ptr = feed_vec_[i]->mutable_data({total_instance, 1}, this->place_); CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(float)); } else if (type[0] == 'u') { // uint64 // no uint64_t type in paddlepaddle uint64_t* feasign = batch_uint64_feasigns_[i].data(); int64_t* tensor_ptr = feed_vec_[i]->mutable_data( {total_instance, 1}, this->place_); CopyToFeedTensor(tensor_ptr, feasign, total_instance * sizeof(int64_t)); } auto& slot_offset = offset_[i]; LoD data_lod{slot_offset}; feed_vec_[i]->set_lod(data_lod); if (use_slots_is_dense_[i]) { if (inductive_shape_index_[i] != -1) { use_slots_shape_[i][inductive_shape_index_[i]] = total_instance / total_dims_without_inductive_[i]; } feed_vec_[i]->Resize(framework::make_ddim(use_slots_shape_[i])); } } #endif } } // namespace framework } // namespace paddle