# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid as fluid from paddle.static import InputSpec from paddle.fluid.framework import core, convert_np_dtype_to_dtype_ class TestInputSpec(unittest.TestCase): def test_default(self): tensor_spec = InputSpec([3, 4]) self.assertEqual(tensor_spec.dtype, convert_np_dtype_to_dtype_('float32')) self.assertEqual(tensor_spec.name, None) def test_from_tensor(self): x_bool = fluid.layers.fill_constant(shape=[1], dtype='bool', value=True) bool_spec = InputSpec.from_tensor(x_bool) self.assertEqual(bool_spec.dtype, x_bool.dtype) self.assertEqual(bool_spec.shape, x_bool.shape) self.assertEqual(bool_spec.name, x_bool.name) bool_spec2 = InputSpec.from_tensor(x_bool, name='bool_spec') self.assertEqual(bool_spec2.name, bool_spec2.name) def test_from_numpy(self): x_numpy = np.ones([10, 12]) x_np_spec = InputSpec.from_numpy(x_numpy) self.assertEqual(x_np_spec.dtype, convert_np_dtype_to_dtype_(x_numpy.dtype)) self.assertEqual(x_np_spec.shape, x_numpy.shape) self.assertEqual(x_np_spec.name, None) x_numpy2 = np.array([1, 2, 3, 4]).astype('int64') x_np_spec2 = InputSpec.from_numpy(x_numpy2, name='x_np_int64') self.assertEqual(x_np_spec2.dtype, convert_np_dtype_to_dtype_(x_numpy2.dtype)) self.assertEqual(x_np_spec2.shape, x_numpy2.shape) self.assertEqual(x_np_spec2.name, 'x_np_int64') def test_shape_with_none(self): tensor_spec = InputSpec([None, 4, None], dtype='int8', name='x_spec') self.assertEqual(tensor_spec.dtype, convert_np_dtype_to_dtype_('int8')) self.assertEqual(tensor_spec.name, 'x_spec') self.assertEqual(tensor_spec.shape, (-1, 4, -1)) def test_shape_raise_error(self): # 1. shape should only contain int and None. with self.assertRaises(ValueError): tensor_spec = InputSpec(['None', 4, None], dtype='int8') # 2. shape should be type `list` or `tuple` with self.assertRaises(TypeError): tensor_spec = InputSpec(4, dtype='int8') # 3. len(shape) should be greater than 0. with self.assertRaises(ValueError): tensor_spec = InputSpec([], dtype='int8') def test_batch_and_unbatch(self): tensor_spec = InputSpec([10]) # insert batch_size batch_tensor_spec = tensor_spec.batch(16) self.assertEqual(batch_tensor_spec.shape, (16, 10)) # unbatch unbatch_spec = batch_tensor_spec.unbatch() self.assertEqual(unbatch_spec.shape, (10, )) # 1. `unbatch` requires len(shape) > 1 with self.assertRaises(ValueError): unbatch_spec.unbatch() # 2. `batch` requires len(batch_size) == 1 with self.assertRaises(ValueError): tensor_spec.batch([16, 12]) # 3. `batch` requires type(batch_size) == int with self.assertRaises(TypeError): tensor_spec.batch('16') def test_eq_and_hash(self): tensor_spec_1 = InputSpec([10, 16], dtype='float32') tensor_spec_2 = InputSpec([10, 16], dtype='float32') tensor_spec_3 = InputSpec([10, 16], dtype='float32', name='x') tensor_spec_4 = InputSpec([16], dtype='float32', name='x') # override ``__eq__`` according to [shape, dtype, name] self.assertTrue(tensor_spec_1 == tensor_spec_2) self.assertTrue(tensor_spec_1 != tensor_spec_3) # different name self.assertTrue(tensor_spec_3 != tensor_spec_4) # different shape # override ``__hash__`` according to [shape, dtype] self.assertTrue(hash(tensor_spec_1) == hash(tensor_spec_2)) self.assertTrue(hash(tensor_spec_1) == hash(tensor_spec_3)) self.assertTrue(hash(tensor_spec_3) != hash(tensor_spec_4)) if __name__ == '__main__': unittest.main()