/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "MKLDNNTester.h" #include "ModelConfig.pb.h" #include "paddle/gserver/activations/MKLDNNActivation.h" #include "paddle/math/MathUtils.h" using namespace paddle; // NOLINT DECLARE_bool(thread_local_rand_use_global_seed); DECLARE_bool(use_gpu); DECLARE_bool(use_mkldnn); struct testFCDesc { int bs; int ic; int oc; int ih, iw; // oh == ow == 1 }; void testFcLayer(const testFCDesc& pm) { const std::string compareTypes[] = {"mkldnn_fc", "fc"}; TestConfig cfg; cfg.layerConfig.set_type(compareTypes[0]); cfg.layerConfig.set_size(pm.oc); cfg.inputDefs.push_back( {INPUT_DATA, "layer_0", /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw), /* size of weight= */ size_t(pm.oc * pm.ic * pm.ih * pm.iw)}); cfg.layerConfig.add_inputs(); MKLDNNTester tester; for (auto biasSize : {pm.oc, 0}) { cfg.biasSize = biasSize; TestConfig ref = cfg; ref.layerConfig.set_type(compareTypes[1]); for (auto bs : {pm.bs, 1}) { tester.run(cfg, ref, bs, pm.ih, pm.iw); } } } TEST(MKLDNNLayer, FcLayer) { testFcLayer({/*bs*/ 2, /*ic*/ 2, /*oc*/ 3, /*ih*/ 1, /*iw*/ 1}); testFcLayer({/*bs*/ 3, /*ic*/ 7, /*oc*/ 19, /*ih*/ 1, /*iw*/ 1}); testFcLayer({/*bs*/ 8, /*ic*/ 16, /*oc*/ 32, /*ih*/ 13, /*iw*/ 13}); testFcLayer({/*bs*/ 4, /*ic*/ 12, /*oc*/ 18, /*ih*/ 13, /*iw*/ 11}); testFcLayer({/*bs*/ 2, /*ic*/ 64, /*oc*/ 32, /*ih*/ 16, /*iw*/ 16}); testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16}); } struct testConvDesc { int bs, gp; int ic, ih, iw; int oc, oh, ow; int fh, fw; int ph, pw; int sh, sw; int dh, dw; }; void testConvLayer(const testConvDesc& pm) { const std::string compareTypes[] = {"mkldnn_conv", "exconv"}; TestConfig cfg; cfg.layerConfig.set_type(compareTypes[0]); cfg.layerConfig.set_num_filters(pm.oc); cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow); // cfg.layerConfig.set_partial_sum(1); // TODO: check it cfg.layerConfig.set_shared_biases(true); cfg.inputDefs.push_back( {INPUT_DATA, "layer_0", /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw), /* size of weight= */ size_t(pm.oc * pm.ic * pm.fh * pm.fw / pm.gp)}); LayerInputConfig* input = cfg.layerConfig.add_inputs(); ConvConfig* conv = input->mutable_conv_conf(); conv->set_groups(pm.gp); conv->set_img_size(pm.iw); conv->set_img_size_y(pm.ih); conv->set_output_x(pm.ow); conv->set_output_y(pm.oh); conv->set_filter_size(pm.fw); conv->set_filter_size_y(pm.fh); conv->set_channels(pm.ic); conv->set_padding(pm.pw); conv->set_padding_y(pm.ph); conv->set_stride(pm.sw); conv->set_stride_y(pm.sh); conv->set_dilation(pm.dw); conv->set_dilation_y(pm.dh); conv->set_caffe_mode(true); conv->set_filter_channels(conv->channels() / conv->groups()); CHECK_EQ(conv->filter_channels() * pm.gp, conv->channels()) << "it is indivisible"; int fh = (pm.fh - 1) * pm.dh + 1; int fw = (pm.fw - 1) * pm.dw + 1; int ow = outputSize(pm.iw, fw, pm.pw, pm.sw, true); int oh = outputSize(pm.ih, fh, pm.ph, pm.sh, true); CHECK_EQ(ow, pm.ow) << "output size check failed"; CHECK_EQ(oh, pm.oh) << "output size check failed"; MKLDNNTester tester; for (auto biasSize : {pm.oc, 0}) { cfg.biasSize = biasSize; TestConfig ref = cfg; ref.layerConfig.set_type(compareTypes[1]); for (auto bs : {pm.bs, 1}) { tester.run(cfg, ref, bs, pm.ih, pm.iw); } } } TEST(MKLDNNLayer, ConvLayer) { /* bs, gp, ic, ih, iw, oc, oh, ow, fh, fw, ph, pw, sh, sw, dh, dw */ testConvLayer({2, 1, 3, 32, 32, 16, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1}); testConvLayer({2, 1, 8, 16, 16, 8, 16, 16, 3, 3, 1, 1, 1, 1, 1, 1}); testConvLayer({3, 1, 16, 32, 32, 3, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1}); testConvLayer({8, 1, 16, 18, 18, 32, 18, 18, 3, 3, 1, 1, 1, 1, 1, 1}); testConvLayer({16, 1, 1, 42, 31, 32, 23, 11, 4, 5, 3, 2, 2, 3, 1, 1}); testConvLayer({2, 1, 8, 16, 16, 8, 8, 8, 3, 3, 1, 1, 2, 2, 1, 1}); testConvLayer({3, 1, 8, 13, 13, 8, 7, 7, 3, 3, 1, 1, 2, 2, 1, 1}); // with groups testConvLayer({2, 2, 4, 5, 5, 8, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1}); testConvLayer({2, 3, 3, 5, 5, 3, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1}); testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1}); } struct testPoolDesc { int bs, ch; // input channel and output channel are the same int ih, iw; int oh, ow; int fh, fw; int ph, pw; int sh, sw; }; void testPoolLayer(const testPoolDesc& pm) { const std::string compareTypes[] = {"mkldnn_pool", "pool"}; TestConfig cfg; cfg.layerConfig.set_type(compareTypes[0]); cfg.layerConfig.set_size(pm.ch * pm.oh * pm.ow); cfg.inputDefs.push_back( {INPUT_DATA, "layer_0", /* size of input layer= */ size_t(pm.ch * pm.ih * pm.iw), 0}); LayerInputConfig* input = cfg.layerConfig.add_inputs(); PoolConfig* pool = input->mutable_pool_conf(); pool->set_channels(pm.ch); pool->set_img_size(pm.iw); pool->set_img_size_y(pm.ih); pool->set_output_x(pm.ow); pool->set_output_y(pm.oh); pool->set_size_x(pm.fw); pool->set_size_y(pm.fh); pool->set_padding(pm.pw); pool->set_padding_y(pm.ph); pool->set_stride(pm.sw); pool->set_stride_y(pm.sh); int oh = outputSize(pm.ih, pm.fh, pm.ph, pm.sh, false); int ow = outputSize(pm.iw, pm.fw, pm.pw, pm.sw, false); CHECK_EQ(ow, pm.ow) << "output size check failed"; CHECK_EQ(oh, pm.oh) << "output size check failed"; MKLDNNTester tester; for (auto type : {"max-projection", "avg-projection"}) { pool->set_pool_type(type); TestConfig ref = cfg; ref.layerConfig.set_type(compareTypes[1]); for (auto bs : {pm.bs, 1}) { tester.run(cfg, ref, bs, pm.ih, pm.iw); } } } TEST(MKLDNNLayer, PoolLayer) { /* bs, ch, ih, iw, oh, ow, fh, fw, ph, pw, sh, sw*/ testPoolLayer({2, 1, 4, 4, 2, 2, 3, 3, 0, 0, 2, 2}); testPoolLayer({10, 8, 16, 16, 8, 8, 2, 2, 0, 0, 2, 2}); testPoolLayer({4, 2, 5, 5, 3, 3, 3, 3, 1, 1, 2, 2}); testPoolLayer({8, 16, 56, 56, 28, 28, 3, 3, 0, 0, 2, 2}); testPoolLayer({8, 16, 14, 14, 7, 7, 3, 3, 0, 0, 2, 2}); testPoolLayer({4, 16, 7, 7, 1, 1, 7, 7, 0, 0, 1, 1}); testPoolLayer({4, 2, 5, 5, 3, 3, 5, 5, 1, 1, 1, 1}); testPoolLayer({2, 8, 56, 56, 29, 29, 3, 3, 1, 1, 2, 2}); } struct testActDesc { int bs, ch; int ih, iw; }; static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) { cfg.biasSize = 0; cfg.layerConfig.set_type("addto"); cfg.layerConfig.set_size(pm.ch * pm.ih * pm.iw); cfg.inputDefs.push_back( {INPUT_DATA, "layer_0", /* size of input layer= */ size_t(pm.ch * pm.ih * pm.iw), 0}); cfg.layerConfig.add_inputs(); } void testActivation(std::string& type, const testActDesc& pm) { const std::string compareTypes[] = {type, type.erase(0, 7)}; TestConfig cfg; getAddtoConfig(cfg, pm); TestConfig ref = cfg; cfg.layerConfig.set_active_type(compareTypes[0]); ref.layerConfig.set_active_type(compareTypes[1]); MKLDNNTester tester; for (auto bs : {pm.bs, 1}) { tester.run(cfg, ref, bs, pm.ih, pm.iw); } } TEST(MKLDNNActivation, Activations) { auto types = MKLDNNActivation::getAllRegisteredTypes(); // TODO(TJ): mkldnn_softmax not implemented, paddle do not have elu activation std::set excluded{"mkldnn_softmax", "mkldnn_elu"}; for (auto type : types) { if (excluded.count(type)) { continue; } testActivation(type, {16, 64, 32, 32}); } } // TODO(TJ): add branch test int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); FLAGS_use_gpu = false; FLAGS_use_mkldnn = true; initMain(argc, argv); FLAGS_thread_local_rand_use_global_seed = true; srand(1); return RUN_ALL_TESTS(); }