# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest class TestConcatOp(OpTest): def setUp(self): self.op_type = "concat" self.init_test_data() self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]} self.attrs = {'axis': self.axis} self.outputs = { 'Out': np.concatenate( (self.x0, self.x1, self.x2), axis=self.axis) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['x0'], 'Out') self.check_grad(['x1'], 'Out') self.check_grad(['x2'], 'Out') def init_test_data(self): self.x0 = np.random.random((2, 1, 4, 5)).astype('float32') self.x1 = np.random.random((2, 2, 4, 5)).astype('float32') self.x2 = np.random.random((2, 3, 4, 5)).astype('float32') self.axis = 1 class TestConcatOp2(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((2, 3, 4, 5)).astype('float32') self.x1 = np.random.random((2, 3, 4, 5)).astype('float32') self.x2 = np.random.random((2, 3, 4, 5)).astype('float32') self.axis = 1 class TestConcatOp3(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((1, 256, 170, 256)).astype('float32') self.x1 = np.random.random((1, 128, 170, 256)).astype('float32') self.x2 = np.random.random((1, 128, 170, 256)).astype('float32') self.axis = 1 def test_check_grad(self): pass if __name__ == '__main__': unittest.main()