# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml import argparse import re from api_gen import ForwardAPI class SparseAPI(ForwardAPI): def __init__(self, api_item_yaml): super(SparseAPI, self).__init__(api_item_yaml) def gene_api_declaration(self): return f""" // {", ".join(self.outputs['names'])} {super(SparseAPI, self).gene_api_declaration()} """ def gene_output(self, out_dtype_list, out_tensor_type_list=None, code_indent='', inplace_flag=False): kernel_output = "" output_names = [] output_create = "" return_type = self.get_return_type_with_intermediate(inplace_flag) output_type_map = { 'dense': 'TensorType::DENSE_TENSOR', 'sparse_coo': 'TensorType::SPARSE_COO', 'sparse_csr': 'TensorType::SPARSE_CSR' } if len(out_dtype_list) == 1: kernel_output = 'kernel_out' output_names.append('kernel_out') inplace_assign = " = " + self.inplace_map[self.outputs['names'][ 0]] if inplace_flag and self.inplace_map is not None and self.outputs[ 'names'][0] in self.inplace_map else "" output_create = f""" {return_type} api_output{inplace_assign}; auto* kernel_out = SetSparseKernelOutput(&api_output, {output_type_map[out_dtype_list[0]]});""" elif len(out_dtype_list) > 1: output_create = f""" {return_type} api_output;""" if inplace_flag: output_create = f""" {return_type} api_output{{""" for out_name in self.outputs['names']: if out_name in self.inplace_map: output_create = output_create + self.inplace_map[ out_name] + ', ' else: output_create += 'Tensor(), ' output_create = output_create[:-2] + '};' for i in range(len(out_dtype_list)): kernel_output = kernel_output + f'kernel_out_{i}, ' output_names.append(f'kernel_out_{i}') output_create = output_create + f""" auto* kernel_out_{i} = SetSparseKernelOutput(&std::get<{i}>(api_output), {output_type_map[out_dtype_list[i]]});""" kernel_output = kernel_output[:-2] else: raise ValueError( "{} : Output error: the output should not be empty.".format( self.api)) return kernel_output, output_names, output_create def gen_sparse_kernel_context(self, kernel_output_names): input_trans_map = { 'const Tensor&': 'const phi::TenseBase&', 'const std::vector&': 'const std::vector&', 'const paddle::optional&': 'paddle::optional' } out_trans_map = { 'Tensor': 'phi::TenseBase*', 'std::vector': 'std::vector' } input_names = self.inputs['names'] input_infos = self.inputs['input_info'] attr_names = self.attrs['names'] kernel_param = self.kernel['param'] if kernel_param is None: kernel_param = input_names + attr_names kernel_context_code = "" for param in kernel_param: if param in input_names: if param in self.optional_vars: kernel_context_code = kernel_context_code + f""" kernel_context.EmplaceBackInput({param} ? {param}->impl().get() : nullptr);""" else: kernel_context_code = kernel_context_code + f""" kernel_context.EmplaceBackInput({param}.impl().get());""" continue if param in attr_names: # set attr for kernel_context if 'IntArray' in self.attrs['attr_info'][param][0]: param = 'phi::IntArray(' + param + ')' elif 'Scalar' in self.attrs['attr_info'][param][0]: param = 'phi::Scalar(' + param + ')' elif isinstance(param, bool): param = str(param).lower() else: param + str(param) + ", " kernel_context_code = kernel_context_code + f""" kernel_context.EmplaceBackAttr({param});""" for out_name in kernel_output_names: kernel_context_code = kernel_context_code + f""" kernel_context.EmplaceBackOutput({out_name});""" return kernel_context_code def gen_sparse_kernel_code(self, kernel_name, inplace_flag=False): _, kernel_output_names, output_create = self.gene_output( self.kernel['dispatch'][kernel_name][1], None, '', inplace_flag) kernel_context_code = self.gen_sparse_kernel_context( kernel_output_names) return_code = "" if len( self.gene_return_code()) == 0 else " " + self.gene_return_code() return f""" VLOG(6) << "{self.api} api sparse kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]"; auto phi_kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError( "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}}); VLOG(6) << "{self.api} api sparse kernel: " << phi_kernel; auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); auto kernel_context = phi::KernelContext(dev_ctx); {output_create} {kernel_context_code} phi_kernel(&kernel_context); {return_code}""" def get_condition_code(self, kernel_name): assert self.kernel['dispatch'][kernel_name], \ f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'conv3d' in sparse_api.yaml." input_types = self.kernel['dispatch'][kernel_name][0] sparse_type_map = { 'sparse_coo': 'DataLayout::SPARSE_COO', 'sparse_csr': 'DataLayout::SPARSE_CSR' } condition_list = [] for i, in_type in enumerate(input_types): if in_type == "dense": if self.inputs['names'][i] in self.optional_vars: condition_list.append( f"(!{self.inputs['names'][i]} || phi::DenseTensor::classof({self.inputs['names'][i]}->impl().get()))" ) else: condition_list.append( f"phi::DenseTensor::classof({self.inputs['names'][i]}.impl().get())" ) else: condition_list.append( f"{self.inputs['names'][i]}.layout() == {sparse_type_map[in_type]}" ) return " && ".join(condition_list) def gene_dispatch_code(self, kernel_name, inplace_flag=False): return f""" if ({self.get_condition_code(kernel_name)}) {{ {self.gen_sparse_kernel_code(kernel_name, inplace_flag)} }} """ def gene_base_api_code(self, inplace_flag=False): api_func_name = self.get_api_func_name() if inplace_flag and api_func_name[-1] != '_': api_func_name += '_' kernel_dispatch_code = f"{self.gene_kernel_select()}\n" for kernel_name in self.kernel['func']: kernel_dispatch_code += self.gene_dispatch_code( kernel_name, inplace_flag) return f""" PADDLE_API {self.get_return_type()} {api_func_name}({self.get_define_args()}) {{ {kernel_dispatch_code} PADDLE_THROW(phi::errors::Unimplemented( "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors.")); }} """ def header_include(): return """ #include #include "paddle/phi/api/include/tensor.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/common/int_array.h" #include "paddle/utils/optional.h" """ def source_include(header_file_path): return f""" #include "{header_file_path}" #include #include "glog/logging.h" #include "paddle/phi/api/lib/api_gen_utils.h" #include "paddle/phi/api/lib/data_transform.h" #include "paddle/phi/api/lib/kernel_dispatch.h" #include "paddle/phi/api/lib/sparse_api_custom_impl.h" #include "paddle/phi/core/kernel_registry.h" """ def api_namespace(): return (""" namespace paddle { namespace experimental { namespace sparse { """, """ } // namespace sparse } // namespace experimental } // namespace paddle """) def generate_api(api_yaml_path, header_file_path, source_file_path): with open(api_yaml_path, 'r') as f: apis = yaml.load(f, Loader=yaml.FullLoader) header_file = open(header_file_path, 'w') source_file = open(source_file_path, 'w') namespace = api_namespace() header_file.write("#pragma once\n") header_file.write(header_include()) header_file.write(namespace[0]) include_header_file = "paddle/phi/api/include/sparse_api.h" source_file.write(source_include(include_header_file)) source_file.write(namespace[0]) for api in apis: sparse_api = SparseAPI(api) if sparse_api.is_dygraph_api: sparse_api.is_dygraph_api = False header_file.write(sparse_api.gene_api_declaration()) source_file.write(sparse_api.gene_api_code()) header_file.write(namespace[1]) source_file.write(namespace[1]) header_file.close() source_file.close() def main(): parser = argparse.ArgumentParser( description='Generate PaddlePaddle C++ Sparse API files') parser.add_argument('--api_yaml_path', help='path to sparse api yaml file', default='paddle/phi/api/yaml/sparse_api.yaml') parser.add_argument('--api_header_path', help='output of generated api header code file', default='paddle/phi/api/include/sparse_api.h') parser.add_argument('--api_source_path', help='output of generated api source code file', default='paddle/phi/api/lib/sparse_api.cc') options = parser.parse_args() api_yaml_path = options.api_yaml_path header_file_path = options.api_header_path source_file_path = options.api_source_path generate_api(api_yaml_path, header_file_path, source_file_path) if __name__ == '__main__': main()