from paddle.v2.framework.layer_helper import LayerHelper, unique_name import paddle.v2.framework.core as core from paddle.v2.framework.framework import OpProtoHolder, Variable, Program import re __all__ = [ 'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat', 'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim', 'batch_norm', 'accuracy' ] def fc(input, size, param_attr=None, bias_attr=True, name=None, act=None, num_flatten_dims=1, program=None, init_program=None): # create helper helper = LayerHelper('fc', **locals()) dtype = helper.input_dtype() # mul mul_results = [] for input_var, param_attr in helper.iter_inputs_and_params(): input_shape = input_var.shape param_shape = [ reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) ] + [size] w = helper.create_parameter( attr=param_attr, shape=param_shape, dtype=dtype) tmp = helper.create_tmp_variable(dtype) helper.append_op( type="mul", inputs={ "X": input_var, "Y": w, }, outputs={"Out": tmp}, attrs={'x_num_col_dims': num_flatten_dims, 'y_num_col_dims': 1}) mul_results.append(tmp) # sum if len(mul_results) == 1: pre_bias = mul_results[0] else: pre_bias = helper.create_tmp_variable(dtype) helper.append_op( type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}) # add bias pre_activation = helper.append_bias_op(pre_bias) # add activation return helper.append_activation(pre_activation) def embedding(input, size, data_type='float32', is_sparse=False, param_attr=None, program=None, init_program=None): helper = LayerHelper('embedding', **locals()) w = helper.create_parameter( attr=helper.param_attr, shape=size, dtype=data_type) tmp = helper.create_tmp_variable(data_type) helper.append_op( type='lookup_table', inputs={'Ids': input, 'W': w}, outputs={'Out': tmp}, attrs={'is_sparse': is_sparse}) return tmp def data(name, shape, data_type='float32', type=core.VarDesc.VarType.LOD_TENSOR, append_batch_size=True, program=None, init_program=None): helper = LayerHelper('data', **locals()) if append_batch_size: shape = [-1] + shape # append batch size as -1 return helper.create_global_variable( name=name, shape=shape, dtype=data_type, type=type) def _convert_(name): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def _create_op_func_(op_type): op_proto = OpProtoHolder.instance().get_op_proto(op_type) not_intermediate_outputs = \ filter(lambda output: not output.intermediate, op_proto.outputs) intermediate_outputs = \ filter(lambda output: output.intermediate, op_proto.outputs) if len(not_intermediate_outputs) != 1: raise ValueError( "Only one not intermediate output operator can be automatically generated" ) if not_intermediate_outputs[0].duplicable: raise ValueError( "Only not duplicable op can be automatically generated") for output in intermediate_outputs: if output.duplicable: raise ValueError( "Only when all intermediate ops are not duplicable, " "this op can be automatically generated") o_name = not_intermediate_outputs[0].name intermediate_output_names = [output.name for output in intermediate_outputs] def func(**kwargs): helper = LayerHelper(op_type, **kwargs) inputs = dict() dtype = None for ipt in op_proto.inputs: name = _convert_(ipt.name) val = kwargs.pop(name, []) if not isinstance(val, list) and not isinstance(val, tuple): val = [val] for each in val: if not isinstance(each, Variable): raise ValueError("input of {0} must be variable".format( op_type)) if dtype is None: dtype = each.data_type elif dtype != each.data_type: raise ValueError( "operator {0} must input same dtype".format(op_type)) inputs[ipt.name] = val outputs = dict() out = helper.create_tmp_variable(dtype=dtype) outputs[o_name] = [out] for name in intermediate_output_names: outputs[name] = [helper.create_tmp_variable(dtype=dtype)] helper.append_op( type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs) return helper.append_activation(out) func.__name__ = op_type globals()[op_type] = func global __all__ __all__.append(op_type) _create_op_func_('mean') _create_op_func_('mul') _create_op_func_('elementwise_add') _create_op_func_('dropout') _create_op_func_('reshape') def cast(x, data_type, program=None): helper = LayerHelper('cast', **locals()) out = helper.create_tmp_variable(dtype=data_type) helper.append_op( type='cast', inputs={'X': [x]}, outputs={'Out': [out]}, attrs={'in_data_type': x.data_type, 'out_data_type': out.data_type}) return out def concat(input, axis, program=None, init_program=None): helper = LayerHelper('concat', **locals()) out = helper.create_tmp_variable(dtype=helper.input_dtype()) helper.append_op( type='concat', inputs={'X': input}, outputs={'Out': [out]}, attrs={'axis': axis}) return out def sums(input, program=None, init_program=None): helper = LayerHelper('sum', **locals()) out = helper.create_tmp_variable(dtype=helper.input_dtype()) helper.append_op(type='sum', inputs={'X': [input]}, outputs={'Out': out}) return out def cos_sim(X, Y, program=None, init_program=None): helper = LayerHelper('cos_sim', **locals()) out = helper.create_tmp_variable(dtype=helper.input_dtype("X")) xnorm = helper.create_tmp_variable(dtype=helper.input_dtype("X")) ynorm = helper.create_tmp_variable(dtype=helper.input_dtype("X")) helper.append_op( type='cos_sim', inputs={'X': [X], 'Y': [Y]}, outputs={'Out': [out], 'XNorm': [xnorm], 'YNorm': [ynorm]}) return out, xnorm, ynorm def cross_entropy(input, label, **kwargs): helper = LayerHelper('cross_entropy', **kwargs) out = helper.create_tmp_variable(dtype=input.data_type) helper.append_op( type='cross_entropy', inputs={'X': [input], 'Label': [label]}, outputs={'Y': [out]}, attrs=kwargs) return out def square_error_cost(input, label, **kwargs): helper = LayerHelper('square_error_cost', **kwargs) minus_out = helper.create_tmp_variable(dtype=input.data_type) helper.append_op( type='elementwise_sub', inputs={'X': [input], 'Y': [label]}, outputs={'Out': [minus_out]}) square_out = helper.create_tmp_variable(dtype=input.data_type) helper.append_op( type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]}) return square_out def accuracy(input, label, k=1, **kwargs): helper = LayerHelper("accuracy", **kwargs) topk_out = helper.create_tmp_variable(dtype=input.data_type) topk_indices = helper.create_tmp_variable(dtype="int64") helper.append_op( type="top_k", inputs={"X": [input]}, outputs={"Out": [topk_out], "Indices": [topk_indices]}, attrs={"k": k}) acc_out_dtype = kwargs.get("out_dtype", "float32") acc_out = helper.create_tmp_variable(dtype=acc_out_dtype) helper.append_op( type="accuracy", inputs={ "Out": [topk_out], "Indices": [topk_indices], "Label": [label] }, outputs={"Accuracy": [acc_out]}) return acc_out def sequence_conv(input, num_filters, filter_size=3, stride=1, padding=None, bias_attr=None, param_attr=None, program=None, init_program=None): # FIXME(dzh) : want to unify the argument of python layer # function. So we ignore some unecessary attributes. # such as, padding_trainable, context_start. helper = LayerHelper('sequence_conv', **locals()) dtype = helper.input_dtype() filter_shape = [filter_size * input.shape[1], num_filters] filter = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype) pre_bias = helper.create_tmp_variable(dtype) helper.append_op( type='sequence_conv', inputs={ 'X': [input], 'Filter': [filter], }, outputs={"Out": pre_bias}, attrs={ 'context_stride': stride, 'context_start': 0, 'context_length': filter_size }) pre_act = helper.append_bias_op(pre_bias) return helper.append_activation(pre_act) def conv2d(input, num_filters, name=None, filter_size=[1, 1], act=None, groups=None, stride=[1, 1], padding=None, bias_attr=None, param_attr=None, program=None, init_program=None): helper = LayerHelper('conv2d', **locals()) dtype = helper.input_dtype() num_channels = input.shape[1] if groups is None: num_filter_channels = num_channels else: if num_channels % groups is not 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = num_channels / groups if isinstance(filter_size, int): filter_size = [filter_size, filter_size] if isinstance(stride, int): stride = [stride, stride] if isinstance(padding, int): padding = [padding, padding] input_shape = input.shape filter_shape = [num_filters, num_filter_channels] + filter_size filter = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype) pre_bias = helper.create_tmp_variable(dtype) helper.append_op( type='conv2d', inputs={ 'Input': input, 'Filter': filter, }, outputs={"Output": pre_bias}, attrs={'strides': stride, 'paddings': padding, 'groups': groups}) pre_act = helper.append_bias_op(pre_bias) return helper.append_activation(pre_act) def sequence_pool(input, pool_type, program=None, init_program=None): # FIXME(dzh) : want to unify the argument of python layer # function. So we ignore some unecessary attributes ENUM_POOL_TYPE = dict({ "AVERAGE": 0, "SUM": 1, "SQRT": 2, "MAX": 3, "LAST": 4, "FIRST": 5 }) if pool_type.upper() not in ENUM_POOL_TYPE: raise ValueError("Unknown pool_type: '%s'. It can only be %s.", str(pool_type), " ".join(ENUM_POOL_TYPE.keys())) helper = LayerHelper('sequence_pool', **locals()) dtype = helper.input_dtype() pool_out = helper.create_tmp_variable(dtype) # FIXME(dzh): strategy helper.append_op( type="sequence_pool", inputs={"X": [input]}, outputs={"Out": [pool_out]}, attrs={"strategy": ENUM_POOL_TYPE[pool_type.upper()]}) return pool_out def pool2d(input, pool_size, pool_type, pool_stride=[1, 1], pool_padding=[0, 0], global_pooling=False, program=None, init_program=None): if pool_type not in ["max", "avg"]: raise ValueError( "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if isinstance(pool_size, int): pool_size = [pool_size, pool_size] if isinstance(pool_stride, int): pool_stride = [pool_stride, pool_stride] if isinstance(pool_padding, int): pool_padding = [pool_padding, pool_padding] helper = LayerHelper('pool2d', **locals()) dtype = helper.input_dtype() pool_out = helper.create_tmp_variable(dtype) helper.append_op( type="pool2d", inputs={"X": input}, outputs={"Out": pool_out}, attrs={ "poolingType": pool_type, "ksize": pool_size, "globalPooling": global_pooling, "strides": pool_stride, "paddings": pool_padding }) return pool_out def batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e05, param_attr=None, bias_attr=None, data_layout='NCHW', program=None, init_program=None): helper = LayerHelper('batch_norm', **locals()) dtype = helper.input_dtype() input_shape = input.shape if data_layout == 'NCHW': channel_num = input_shape[1] else: if data_layout == 'NHWC': channel_num = input_shape[-1] else: raise ValueError("unsupported data layout:" + data_layout) def get_init_attr(value): if not isinstance(value, float): raise ValueError("attr value should be a float") return {'type': 'fill_constant', 'value': value} def prepend_init_op(var, init_attr): assert isinstance(var, Variable) op_type = init_attr['type'] init_attr['shape'] = var.shape init_attr['data_type'] = int(var.data_type) op = var.block.prepend_op( type=op_type, inputs=None, outputs={'Out': [var]}, attrs=init_attr) return op def create_persistable_var(dtype, shape, init_attr=None): name = unique_name(".".join([helper.name, "xxxx"])) var = init_program.global_block().create_var( dtype=dtype, shape=shape, name=name, persistable=True) if 'init_attr' is not None: prepend_init_op(var, init_attr) return program.global_block().create_var( name=name, dtype=dtype, shape=shape, persistable=True) param_shape = [channel_num] # create parameter scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype) bias = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype) # create input mean = create_persistable_var(dtype, param_shape, get_init_attr(0.0)) variance = create_persistable_var(dtype, param_shape, get_init_attr(1.0)) # create output # mean and mean_out share the same memory mean_out = mean # variance and variance out share the same memory variance_out = variance saved_mean = helper.create_tmp_variable(dtype) saved_variance = helper.create_tmp_variable(dtype) batch_norm_out = helper.create_tmp_variable(dtype) helper.append_op( type="batch_norm", inputs={ "X": input, "Scale": scale, "Bias": bias, "Mean": mean, "Variance": variance }, outputs={ "Y": batch_norm_out, "MeanOut": mean_out, "VarianceOut": variance_out, "SavedMean": saved_mean, "SavedVariance": saved_variance }, attrs={"momentum": momentum, "epsilon": epsilon, "is_test": is_test}) return helper.append_activation(batch_norm_out) class BlockGuard(object): """ BlockGuard used to create sub-block in program by using Python `with` keyword. """ def __init__(self, program): if not isinstance(program, Program): raise TypeError("BlockGuard takes a program") self.program = program def __enter__(self): self.program.create_block() def __exit__(self, exc_type, exc_val, exc_tb): self.program.rollback() if exc_type is not None: return False # re-raise exception return True class StaticRNNGuard(BlockGuard): def __init__(self, rnn): if not isinstance(rnn, StaticRNN): raise TypeError("StaticRNNGuard takes an StaticRNN") super(StaticRNNGuard, self).__init__(rnn.helper.program) self.rnn = rnn def __enter__(self): self.rnn.status = StaticRNN.IN_RNN_BLOCK return super(StaticRNNGuard, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): self.rnn.status = StaticRNN.AFTER_RNN_BLOCK self.rnn.complete_rnn_op() return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb) class StaticRNNMemoryLink(object): """ :param init: the initial variable for Memory :type init: Variable :param pre_mem: the memory variable in previous time step :type pre_mem: Variable :param mem: the memory variable in current time step :type mem: Variable """ def __init__(self, init, pre_mem, mem=None): self.init = init self.pre_mem = pre_mem self.mem = mem class StaticRNN(object): BEFORE_RNN_BLOCK = 0 IN_RNN_BLOCK = 1 AFTER_RNN_BLOCK = 2 def __init__(self, name=None, program=None): self.helper = LayerHelper("static_rnn", name=name, program=program) self.memories = {} # memory map, from pre_mem.name --> MemoryLink self.inputs = [] # input variable list in current block self.outputs = [] # output variable list in parent block self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. # sequence length, since it is a static RNN, sequence length are fixed. self.seq_len = None def step(self): return StaticRNNGuard(self) def _assert_in_rnn_block_(self, method): if self.status != StaticRNN.IN_RNN_BLOCK: raise ValueError("You must invoke {0} in rnn block".format(method)) def memory(self, init=None, shape=None, dtype=None, init_value=0): self._assert_in_rnn_block_('memory') if init is None: if shape is None or dtype is None: raise ValueError( "if init is None, memory at least need shape and dtype") parent_block = self.parent_block() var_name = unique_name("@".join([self.helper.name, "memory_boot"])) boot_var = parent_block.create_var( name=var_name, shape=shape, dtype=dtype, persistable=False) parent_block.append_op( type="fill_constant", inputs={}, outputs={'Out': [boot_var]}, attrs={ 'value': init_value, 'shape': boot_var.shape, 'data_type': boot_var.data_type }) return self.memory(init=boot_var) else: pre_mem = self.helper.create_variable( name=unique_name("@".join([self.helper.name, "mem"])), dtype=init.data_type, shape=init.shape) self.memories[pre_mem.name] = StaticRNNMemoryLink( init=init, pre_mem=pre_mem) return pre_mem def step_input(self, x): self._assert_in_rnn_block_('step_input') if not isinstance(x, Variable): raise TypeError("step input takes a Variable") if self.seq_len is None: self.seq_len = x.shape[1] elif self.seq_len != x.shape[1]: raise ValueError("Static RNN only take fix seq_len input") ipt = self.helper.create_variable( name=x.name, dtype=x.data_type, shape=[-1] + list(x.shape[2:]), type=x.type) self.inputs.append(ipt) return ipt def step_output(self, o): self._assert_in_rnn_block_('step_output') if not isinstance(o, Variable): raise TypeError("step output takes a Variable") out_var = self.parent_block().create_var( name=o.name, shape=[-1, self.seq_len] + list(o.shape[1:]), dtype=o.data_type) self.outputs.append(out_var) def output(self, *outputs): for each in outputs: self.step_output(each) def update_memory(self, mem, var): if not isinstance(mem, Variable) or not isinstance(var, Variable): raise TypeError("update memory should take variables") self.memories[mem.name].mem = var def parent_block(self): prog = self.helper.program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def __call__(self, *args, **kwargs): if self.status != StaticRNN.AFTER_RNN_BLOCK: raise ValueError("RNN output can only be retrieved after rnn block") if len(self.outputs) == 0: raise ValueError("RNN has no output") elif len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def complete_rnn_op(self): # TODO(yuyang18): Create RNN Op here. # Implement this method after RNN op complete. pass